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SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks): Manipulates high-level /
semantic concepts, which can
be recombined

combinatorially =
System 1 System 2
THANKING,
e Intuitive, fast, UNCONSCIOUS, ety * Slow, logical, sequential, CONSCIOUS,
non-linguistic, habitual S linguistic, algorithmic, planning, reasoning
e Current DL S  Future DL
DANIEL

KAHNEMAN

i - W “tof%ay Mame Attention'While Driving




MISSING TO EXTEND DEEP LEARNING TO REACH
HUMAN-LEVEL Al

* QOut-of-distribution generalization & transfer

* Higher-level cognition: system 1 — system 2

High-level semantic representations
Compositionality

Causality
* Agent perspective:
Better world models

Causality
Knowledge-seeking

e Connections between all 3 above!



DEALING WITH
CHANGES IN
DISTRIBUTION




AGENT LEARNING NEEDS
OOD GENERALIZATION

Agents face non-stationarities

Changes in distribution due to
* their actions
* actions of other agents

* different places, times, sensors,
actuators, goals, policies, etc.

Multi-agent systems: many changes in distribution

Ood generalization needed for continual learning
s oMila ;



COMPOSITIONALITY HELPS IID AND OOD GENERALIZATION

Different forms of compositionality
cach with different exponential advantages

* Distributed representations
(Pascanu et al ICLR 2014)

* Composition of layers 1n deep nets

(Montufar et al NeurIPS 2014) A AN TN ALYV
N, ANINSSSNT e

* Systematic generalization in language,

(Lee, Grosse, Ranganath &
analogies, abstract reasoning? TBD Ng, ICML 2009)
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SYSTEMATIC
GENERALIZATION

Studied 1n linguistics

* Dynamically recombine existing concepts

* Even when new combinations have 0 probability
under training distribution

(Lake et al 2015)

* E.g. Science fiction scenarios

* E.g. Driving 1in an unknown city

* Not very successful with current DL

(Lake & Baroni 2017)
(Bahdanau et al & Courville ICLR 2019)
CLOSURE: ongoing work by Bahdanau et al & Courville on CLEVR
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CLOSURE: Known Referring Expressions in Novel Contexts

CLOSURE: Assessing Systematic Generalization of CLEVR Models Bahdanau et al, ArXiV)

Q1 (CLEVR): There is another cube that is the same
size as the brown cube; what is its color?

| ] ]

a matching referring expression

Q2 (CLEVR): There is a thing that is in front of the
vellow thing; does it have the same color as cylinder?

| 1]

a comparison question

Q3 (CLOSURE):There is a rubber object that is the — NEW: a comparison question
same size as the gray cylinder; does it have the same — ‘é")i(tgrssf;gfhing referring

color as the tiny shiny block?



/ CLOSURE Tests

matching REs and embedded complex REs (2 tests)
Is there a cylinder that is the same material as the object to the left of the blue
thing?

matching REs and comparison questions (2 tests)
There is another cube that is the same material as the gray cube; does it have
the same size as the metal thing to the right of the tiny gray cube?

matching REs and logical operations (3 tests)
What is the color of the thing that is to the left of the red cylinder and is the same
Size as the red block?



CLEVR models struggle on CLOSURE questions

end-to-end models (FILM & MAC) struggle on 6 out of 7 tests

seq2seq program generator (NS-VQA) struggles on the logical tests

(surprise!) tensor-valued neural module networks (Tensor-NMN) fair badly even when
connected in ground-truth layouts (our new Vector-NMN fares better)

Bl MAC B NS-VQA PG-Vector-NMN / , GT-Vector-NMN
FILM Bl PG-Tensor-NMN B GT-Tensor-NMN
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CONTRAST WITH THE SYMBOLIC A1 PROGRAM

Avoid pitfalls of classical Al rule-based symbol-manipulation
* Need efficient large-scale learning

* Need semantic grounding in system 1

* Need distributed representations for generalization

* Need efficient = trained search (also system 1)

* Need uncertainty handling

But want

* Systematic generalization
* Factorizing knowledge in small exchangeable pieces

* Manipulating variables, instances, references & indirection
":'E:S%Mlla 11



SYSTEM 2 BASICS:
ATTENTION AND
CONSCIOUSNESS




CORE INGREDIENT FOR CONSCIOUSNESS:
ATTENTION Q0000000000000 0000

(Bahdanau et al ICLR 201)5)

* Focus on a one or a few elements at a time

 Content-based soft attention 1s convenient, Q00000 Q00000000
can backprop to learn where to attend

 Attention 1S an internal action, needs a -
learned attention policy (Egger et al 2019) A

<

* Self-attention: SOTA 1n NLP (transformers)
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MEMORY ACCESS & VANISHING GRADIENT -
REMINDING AND CREDIT ASSIGNMENT

Humans selectively recall memories that are relevant to the current behavior
This creates a link between arbitrarily far past and the present

Automatic reminding:

* Triggered by contextual features.
* Can serve a useful computational role in ongoing cognition.

* Can be used for credit assignment to past events?

Assign credit through only a few past states, instead of all states:

e Sparse, local credit assignment.

* How to pick the states to assign credit to?

@

. .—/\o<—>o\ [}
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" Y i [ a
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Sparse Attentive Backtracking: attention on the past

Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Mike Mozer, Yoshua Bengio,

NeurlPS 2018

The attention mechanism of the associative memory picks up past memories
which match (associate with) the current state.

forward backward

ﬁi} att. K /?9 att.

=» Bypass the vanishing gradient problem and capture long-term dependencies
Ongoing work with G. Lajoie, G. Kerg, B. Kanuparthi

I'_> Mila



FROM ATTENTION TO INDIRECTION

* Attention = dynamic connection

* Recerver gets the selected value

| * Value of what? From where?
Attention < -> Also send ‘name’ (or key) of sender
* Keep track of 'named’ objects: indirection
- * Manipulate sets of objects (transformers)




FROM ATTENTION TO CONSCIOUSNESS

C-word not taboo anymore in cognitive neuroscience

Bottom-up
attention

Global Workspace Theory e
attention
(Baars 1988++, Dehaene 2003++)

* Bottleneck of conscious processing

 Selected item 1s broadcast, stored 1n short-term
memory, conditions perception and action

* System 2-like sequential processing, conscious
reasoning & planning & imagination

(X 7
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ML FOR CONSCIOUSNESS & CONSCIOUSNESS FOR ML

* Formalize and test specific hypothesized
functionalities of consciousness

Can We 5ee
that Trick Qj‘“”

* Get the magic out of consciousness

* Understand evolutionary advantage of

consciousness: computational and statistical
(e.g. systematic generalization)

* Provide these advantages to learning agents

Wy Jolyon.co.uk
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THOUGHTS, CONSCIOUSNESS, LANGUAGE

* Consciousness: from humans reporting

* High-level representations @ language

* High-level concepts: meaning anchored in low-
level perception and action —> tie system 1 & 2

* Grounded high-level concepts

-> better natural language understanding

* Grounded language learning
e.g. BabyAl: (Chevalier-Boisvert and al ICLR 2019)

VATAN
#5 Mil
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Grounded Language Learning

BABY Al PLATFORM Chevalier-Boisvert et al & Bengio ICLR 2019

Purpose: simulate language learning from a human and study data efficiency
Comprises:

a gridworld with partial observability (Minigrid)
a compositional natural-looking Baby language
with over 10719 instructions

19 levels of increasing difficulty

a heuristic stack-based expert that can solve all levels ()  putNextLocal:

"put the blue key next
github.com/mila-udem/babyai to the green ball"




(a) GoToOby:
the blue ball"

"g0 to

PutNextLocal:

"put the blue key next
to the green ball"

>Mila

Early Steps in Baby AI Project

* Designing and training experts

(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this 1s not explicitly stated in the instruction.

for each level, which can serve
as teachers and evaluators for
the Baby Al learners

* Partially observable, 2-D grnid,
instructions about objects,
locations, actions

go to the red ball
open the door on your left
put a ball next to the blue door
open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue box next to a grey
box and pick up the purple box

37



AFFORDANCES, OPTIONS,
EXPLORATION &
CONTROLLABLE FACTORS

» Affordances: concepts / aspects of the environment which can
be changed by the agent

 Temporal abstractions: options, super-actions, macros or

procedures, which can be composed to form more complex The handles on a tea set provide an 5
procedures (Sutton, Precup & Singh 1999) LSRG i)
* Controllable factors: jointly learn a set of (policy, factor) such (Gibson, 1373)
that the policy can control the factor and maximize mutual A
information between policies and factors (Bengio, Thomas, Pineau, * . * 3
Precup & Bengio 2017) 5 A ’ e $ J
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THE CONSCIOUSNESS
PRIOR: SPARSE
FACTOR GRAPH




CONSCIOUSNESS PRIOR

conscious state ¢ >
attention # I

unconscious state h

attention I

Different kinds of attention in the brain

Input x

X %

. ._/‘.<_>.\ ®

000

Y Y [ a
(Y 3¢

P

Bengio 2017, arXiv:1709.08568

* Attention: to form conscious state, thought

* A thought is a low-dimensional object, few
selected aspects of the unconscious state

* Need 2 high-level states:

* Large unconscious state

* Tiny conscious state

* Part of inference mechanism wrt joint
distribution of high-level variables

24



CONSCIOUSNESS PRIOR
= SPARSE FACTOR GRAPH

Bengio 2017, arXiv:1709.08568

—Q

* Property of high-level variables which we
manipulate with language:

we can predict some given very few others

. -0
E.g. "if I drop the ball, it will fall on the ground” .
Prior puts pressure

* Disentangled factors != marginally independent, on encoder

e.g. ball & hand

unconscious state

* Prior: sparse factor graph joint distribution between high- I
level variables, consistent with inference mechanism encoder
which looks at just a few variables at a time.

Input x



LOCALIZED CHANGE
HYPOTHESIS




WHAT CAUSES CHANGES IN DISTRIBUTION?

Underlying physics: actions are localized

Hypothesis to replace iid assumption: in space and time.

changes = consequence of an intervention on few causes or mechanisms

Extends the hypothesis of (informationally) Independent Mechanisms (Scholkopf et al 2012)

=» local inference or adaptation in the right model

Change due
to intervention
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COUNTING ARGUMENT:
LOCALIZED CHANGE—OOD TRANSFER

Good representation of variables and mechanisms + localized change hypothesis

— few bits need to be accounted for (by inference or adaptation)

— few observations (of modified distribution) are required

— g00od ood generalization/fast transfer/small ood sample complexity

Change due
to intervention




META-LEARNING KNOWLEDGE REPRESENTATION FOR
GOOD OOD PERFORMANCE

* Use ood generalization as training objective

* Good decomposition / knowledge representation = good ood performance

* Good ood performance = training signal for factorizing knowledge




EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

A Meta-Transter Objective for Learning to
Disentangle Causal Mechanisms

* Learning whether A causes B or vice-versa

* Learning to disentangle (A,B) from observed (X,Y)

* Exploit changes in distribution and speed of
adaptation to guess causal direction — 4-8

—— B-A
—4.2 1

—4.4 -

)
|

- -

logP(D |

Bengio et al 2019 arXiv:1901.10912

—4.8 -

—5.0 A

Number of examples



A NOVEL APPROACH TO CAUSALITY:
DISENTANGLING THE CAUSES

Bengio et al 2019: A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

» Realistic settings: causal variables are not directly observed
* Need to learn an encoder which maps raw data to causal space

* Consider both the encoder parameters and the causal graph structural parameters as meta-
parameters trained together wrt proposed meta-transfer objective

~ \ - )
» R(0p) > »  R(0s) >
- > - v
Implicit Decoder | Encoder
(A, B) (X, Y) (U, V)

Experiments successful in 2-D with simple linear mappings, Bengio et al 2019.
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Doing Inference on the Intervention

* Toreduce the noise due to unnecessary adaptation of the unchanged
modules, infer which variable was modified by the intervention: has
worse relative log-likelihood after the intervention.

 This could be used to address catastrophic
forgetting: infer if current distribution
matches a previously seen one - ‘

Latent variable
identifies the

\intervention




EXAMPLE: DISCOVERING CAUSE AND EFFECT
= HOW TO FACTORIZE A JOINT DISTRIBUTION?

Learning Neural Causal Models from Unknown
Interventions Keetal 2019 arXiv:1910.01075

Asia graph, CE on ground truth edges, comparison against other

, . . causal induction methods
* Learning small causal graphs, avoid exponential

Our method (Eaton & Murphy, 2007a) (Peters et al., 2016) (Zheng et al., 2018)

explosion of # of graphs by parametrizing ™ o0 107 11

factorized distribution over graphs

 Inference over the intervention:

R
faster causal discovery
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MULTIVARIATE CATEGORICAL MLP CONDITIONALS

0  0.088 0.090 . 0 0 0
o(v) = | 0894 0 0045 | == 1 0 0O Leaky
0.973 0.116 0 . 0 0 ReL.U Softmax

! 0
0 0.19 .
>0 0 o8 A

1-hot sample A o
I-hot sample B/ \\ E)(U . ().E))(li B

1-hot sample C 0 - .

= 97 ©

U
U
0
N N _/
o0 N\ T~

:
o

..‘Zﬁv":Mﬂa Masking sample with configuration MLP




OBSERVING OTHER AGENTS

*Can infants figure out causal structure in spite of being
almost passive observers?

*Yes, if they exploit and infer the interventions made by

other agents

Our approach does not require the learner to know what
the action/intervention was (but it could do inference over
interventions)

*But more efficient learning if you can experiment and thus
test hypotheses about cause & effect
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OPERATING ON SETS OF
POINTABLE OBJECTS
WITH DYNAMICALLY

RECOMBINED
MODULES

¢ B . ... O e
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RECURRENT INDEPENDENT MECHANISMS
Goyal et al 2019, arXiv:1909.10893

Recurrent Neural Network with multiple modules which remain independent by
default and only communicate with attention.

Additionally, only some fraction are allowed to update their recurrent state on each

time step.

This separation is very hard for most RNNs to achieve.
In an LSTM, would require (k-1)*2/k”2 parameters to be zero.
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RECURRENT INDEPENDENT MECHANISMS

x7AN
/////

.......
A4
Qo- V2

Each module only attends to
selected part of input.
Robust to distribution shift.
Robust to distractors.

Top down attention

input
attention

Bottom up visual information

Visual input

Competing RIMs

Biased competition
based on top down

attention



RECURRENT INDEPENDENT MECHANISMS

Data dependent activation of mechanisms
Active mechanisms communicate with other mechanisms
Inactive mechanisms follow the default dynamics

Bottom-up p-down

stimulus-driven goal -directed
. *
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RIMS: MODULARIZE COMPUTATION AND OPERATE ON
SETS OF NAMED AND TYPED OBJECTS

Recurrent Indep endent Mechanisms Default Sparse Default Sparse

dynamics Communication dynamics Communication
Goyal et al 2019, arXiv:1909.10893 - ™
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Results: better ood generalization Iput b Iput | |~ > No Passing Gradient
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QO ‘ O Key-Value Attention

:Mlla Builds on rich recent litterature on object-centric representations (mostly for images) 40



MULTI-HEADED ATTENTION & OBJECTS

RIMs and other models based on self-attention take as input and produce
as outputs SETS of OBJECTS (key-value pairs) rather than vectors

Queries Keys '“4-'1.2.‘Weights Normalized Weights Weights Valﬁs Updated Memory
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RECURRENT INDEPENDENT MECHANISMS

Goyal et al, arXiv:1909.10893

Copying Train(50) | Test(200) Sequential MNIST 16 x 16 19x19 24 x 24
o kx B CE CE kr ka  hsize | Accuracy | Accuracy | Accuracy
6 5 600 0.01 3.5 6 6 600 83.5 56.2 30.9
6 4 600 0.00 0.00 6 5 600 88.3 43.1 22.1
RIMs "6 3 600 0.00 000 RIMs o, ¢ 90.0 73.4 38.1
6 2 600 0.00 0.00
5 3 500 0.00 0.00 - - 300 86.8 42.3 25.2
_ 00 o0 2w ™M 600 84.5 52.2 21.9
LSTM ' '
) 600 0.00 350 EntNet - - : 89.2 52.4 23.5
NTM 00 % RMC - - - | 8958 | 5423 | 2775
RMC 0.00 0.13
000 0ss  DNC - - - 87.2 44.1 19.8
Transformers - ‘ ’ Transformers - - 91.2 51.6 22.9

RIMs generalize better than SOTA methods for sequential learning to

out-of-distribution data (longer sequences, larger images).
£ oMila



RESULTS WITH RECURRENT INDEPENDENT
MECHANISMS

* RIMs drop-in replacement for LSTMs 1n PPO baseline over all Atari games.

* Above 0 (horizontal axis) = improvement over LSTM.
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HYPOTHESES FOR CONSCIOUS PROCESSING BY AGENTS,
SYSTEMATIC GENERALIZATION

* Sparse factor graph 1n space of high-level semantic variables

* Semantic variables are causal: agents, intentions, controllable objects

* Shared ’rules’ across instance tuples (arguments)

* Distributional changes from localized causal interventions (in semantic space)

* Meaning (e.g. grounded by an encoder) stable & robust wrt changes 1n distribution



CONCLUSIONS

* After cog. neuroscience, time 1s ripe for ML to explore consciousness

* Could bring new priors to help systematic & ood generalization

* Could benefit cognitive neuroscience too

* Would allow to expand DL from system 1 to system 2

System 1
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