Deep Understanding: The Next Challenge for Al

Presented by: Gary Marcus Contributors: Mohamed R. Amer, Dylan Bourgeois

Deep understanding vs shallow understanding

Shallow understanding, c. 1965

 Responding (frequently) in behaviorally-appropriate ways, without really getting the overall picture Welcome to

EEEEEE	LL	IIII	ZZZZZZ	AAI	AAA
EE	LL	II	ZZ	AA	AA
EEEEE	LL	II	ZZZ	AAA	ААА
EE	LL	II	ZZ	AA	AA
EEEEEE	LLLLLL	IIII	ZZZZZZZ	AA	AA

Eliza is a mock Rogerian psychotherapist. The original program was described by Joseph Weizenbaum in 1966. This implementation by Norbert Landsteiner 2005.

```
ELIZA: Is something troubling you ?
YOU:
      Men are all alike.
ELIZA: What is the connection, do you suppose ?
YOU:
      They're always bugging us about something or other.
ELIZA: Can you think of a specific example ?
YOU:
      Well, my boyfriend made me come here.
ELIZA: Is it important to you that your boyfriend made you come here ?
      He says I'm depressed much of the time.
YOU:
ELIZA: I am sorry to hear that you are depressed.
      It's true. I am unhappy.
YOU:
ELIZA: Can you explain what made you unhappy ?
YOU:
```

Early example of AI system with shallow understanding (1965)

Shallow understanding, c. 2014

Marcus: Do you read The New Yorker?

Goostman: I read a lot of books ... So many-I don't even remember which ones.

Marcus: You remind me of Sarah Palin.

Goostman: If I'm not mistaken, Sarah is a robot, just as many other "people." We must destroy the plans of these talking trash cans!

Eugene Goostman, 2014

- based on keyword matches, etc
- amusing but superficial
- doesn't represent real progress towards general intelligence

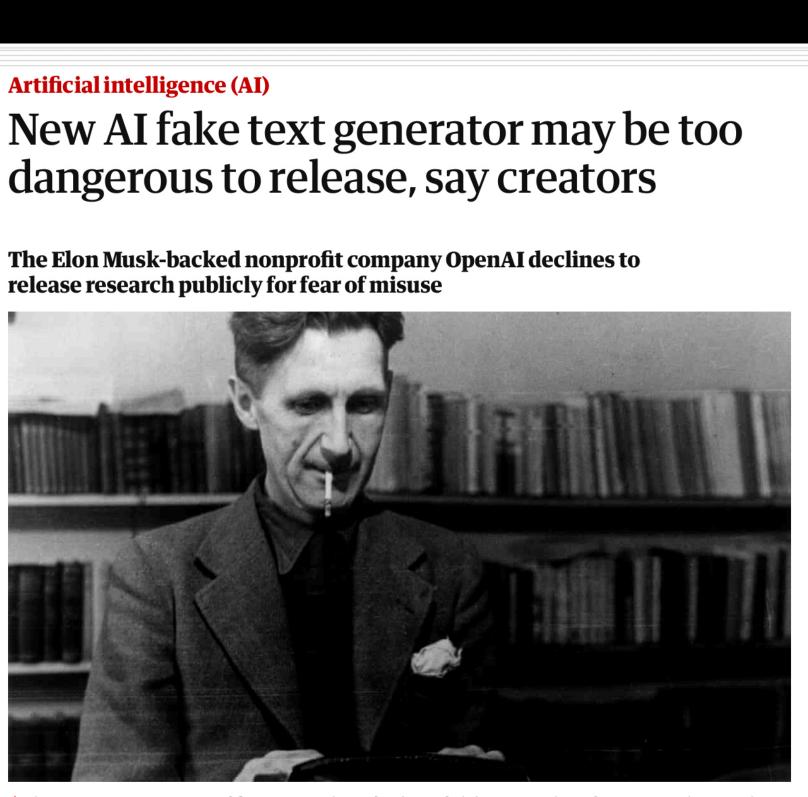
Shallow understanding, c. 2019

Completion

Across the street from NeurIPS, two unicorns walk a bar... at least that's what my picture shows. I've never seen such a multicolored, beautiful forest of sapphire eyes on the same corner of the street in a bar before. People have been coming from all over to watch. I wouldn't be surprised if that's where your favorite eSports tournament is tonight.

NeurCo's built on strong eSports teams: they've been participating in Lisk development to help build their decentralized autonomous organization, NeurDash, and They've hosted a

- GPT-2, allegedly "too dangerous to release"
- Jent
- even more amusing, still superficial



Completion

Across the street from NeurIPS, two unicorns walk a bar... at least that's what my picture shows. I've never seen such a multicolored, beautiful forest of sapphire eyes on the same corner of the street in a bar before. People have been coming from all over to watch. I wouldn't be surprised if that's where your favorite eSports tournament is tonight.

NeurCo's built on strong eSports teams: they've been participating in Lisk development to help build their decentralized autonomous organization, NeurDash, and They've hosted a

Often plausible for first few sentences in a context of surrealist fiction, where there are no facts of the matter

GPT-2

Completion

Two lemurs walk on a road and another joins in. The total number of lemurs on the road is not 100 as claimed, but about 80 or so. I am not sure how much of this lemur traffic is human. It is possible that humans may have been attracted by the lemurs' scent or the food. I am not sure how lemurs can be attracted to the scent of a human. Maybe they can smell the food and food smells in other species, or maybe the food smells to them and they become attracted.

Demonstrably poor in nonfiction, where facts matter

[same is true of Eliza, Turing bots, etc]

prediction at the word-level ≠ prediction at the world-level

Completion

If you drink hydrochloric acid by the bottle full you will probably get sick of it fast if you just try to drink it by the bottle full. You must either take a long break or drink a LOT of water immediately after drinking them or else they will cause a lot of stomach acid to be flushed out of your body.

4. The best method of drinking it is taking an 8oz or 9oz bottle of Hydrochloric Acid in it's proper amount. This way you can avoid the stomach upset and still get it in your system.

Replying to @GaryMarcus

GPT prediction

Translate Tweet

Custom prompt

the winner of the ai debate between gary and yoshua will be

GENERATE ANOTHER

Completion

the winner of the ai debate between gary and yoshua will be a puppet to play puppets! They will carry on with the war, attack the baron lord, kill gavin, kidnap zelen, then fight Yuletide while things end for a while and we run again for a while.

"Local coherence; global gibberish" - Dan Brickley

Adversarial NLI: A New Benchmark for Natural Language Understanding

Yixin Nie^{*}, Adina Williams[†], Emily Dinan[†], Mohit Bansal^{*}, Jason Weston[†], Douwe Kiela[†] *UNC Chapel Hill [†]Facebook AI Research

Abstract

We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-theart models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.

Introduction

2018), and rapidly had to be extended into Super-GLUE (Wang et al., 2019). This raises an important question: Can we collect a large benchmark dataset that can last longer?

The speed with which benchmarks become obsolete raises another important question: are current NLU models genuinely as good as their high performance on benchmarks suggests? A growing body of evidence shows that state-of-the-art models learn to exploit spurious statistical patterns in datasets (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018; Glockner et al., 2018; Geva et al., 2019; McCoy et al., 2019), instead of learning *meaning* in the flexible and generalizable way that humans do. Given this, human annotators—be they seasoned NLP researchers or non-experts might easily be able to construct examples that expose model brittleness.

"A growing body of evidence shows that state-of-the-art models learn to exploit spurious statistical patterns in datasets... instead of learning meaning in the flexible and generalizable way that humans do."

Deep understanding

Deep understanding is being able to

- construct an internal model of what is said/depicted in a story/ article/movie/etc
- perform everyday inferences about what is left unsaid

What do I think of Western civilisation? I think it would be a very good idea.

QuoteHD.com

Mahatma Gandhi Indian Political Leader (1869-1948)

There is no Al system with deep understanding yet

Arguably the closest to deep understanding is ... the oft-maligned CYC

ightarrow

lacksquare

2,459 views | Jul 3, 2019, 01:41pm

What AI Can Learn From Romeo & Juliet

Doug Lenat Contributor **COGNITIVE WORLD** Contributor Group ③

f The story so far.

When someone talks about "AI", today, they are referring to one particular type of AI: multi-layer neural nets trained on big data to recognize patterns. These so-called "deep learning" algorithms in are great at learning more or less the same sort of stimulus/response functionality that our right brain hemispheres carry out – what Daniel Kahneman calls "thinking fast". This is also what the *entire* brains of most animals do. So a better name for them might be AAI's, for Artificial Animal Intelligences. In my last Forbes article (*Not Good As Gold: Today's AI's Are* Dangerously Lacking In AU (Artificial Understanding)) I argued that almost all of today's AI's have little or no left brain function – logical, causal, "thinking slowly". *Homo sapiens* pays a huge price for having an over-sized bicameral brain (high birthing pain and risk) but upon reflection it's worth it — in particular, you or I uldn't norform auch reflection without it! Our obility

Can make nuanced inferences about character motivations, far more subtle than any deep learning QA system I am aware of*

 *But: system doesn't have a natural language front-end (you can't just feed Romeo & Juliet in)

Relies on human experts to encode each problem

 There are also serious issues of coverage, dealing with uncertainty etc

Never been formally evaluated by the community

Not (yet) anything like a full-service, autonomous understanding system

shallow prediction vs deeper parse

two boxes plus three boxes makes

10 total، ب *2 sets + 1

a total of 16 bags of food.

eight boxes of chowder ++ +- A small

GPT-2 @ huggingface.co

two boxes plus three boxes makes		
ĴΣ Extended Keyboard 👤 Upload	∷ Examples	🔀 Random
Using closest Wolfram Alpha interpretation: two boxes plus three boxes		?
Assuming "boxes" is a unit Use as referring to math word problems instead		
Input interpretation:		
2 boxes + 3 boxes		
Result:		
5 boxes		
🔁 Enlarge 🛛 🛃 Data 🛛 🤪 Customize 🛛 🗛 Plain Text		
Basic unit dimensions:		
[box]		
L Download Page	POWERED BY THE WOL	FRAM LANGUAGE

How might we get to deeper understanding Two ways of thinking about the path forward

a. in terms of what machinery might be needed

b. in terms of what signposts might we create along the way

What I wish we could do today

What we will actually do today, at best

Computational prerequisites for deep understanding

Summary of Rebooting Al's proposed recipe for achieving deep understanding

In short, our recipe for achieving common sense, and ultimately general intelligence, is this: Start by developing systems that can represent the core frameworks of human knowledge: time, space, causality, basic knowledge of physical objects and their interactions, basic knowledge of humans and *their* interactions. Embed these in an architecture that can be freely extended to every kind of knowledge, keeping always in mind the central tenets of abstraction, compositionality, and tracking of individuals. Develop powerful reasoning techniques that can deal with knowledge that is complex, uncertain, and incomplete and that can freely work both top-down and bottom-up. Connect these to perception, manipulation, and lan-

guage. Use these to build rich cognitive models of the world. Then finally the keystone: construct a kind of human-inspired learning system that uses all the knowledge and cognitive abilities that the AI has; that incorporates what it learns into its prior knowledge; and that, like a child, voraciously learns from every possible source of information: interacting with the world, interacting with people, reading, watching videos, even being explicitly taught. Put all that together, and that's how you get to deep understanding. It's a tall order, but it's what has to be done.



Possible minimal requirement for deep understanding

- mechanisms for operating over abstractions
- mechanisms for physical reasoning
- mechanisms for psychological reasoning
- mechanisms for temporal reasoning
- a large body of common knowledge
- machinery for acquiring additional knowledge
- (general intelligence a la Chollet?)

Benchmarks as a way forward?

1. Benchmarks don't encourage out-of-the-box-thinking

"One big challenge the community faces is that if you want to get a paper published in machine learning now it's got to have a table in it, with all these different data sets across the top, and all these different methods along the side, and your method has to look like the best one. If it doesn't look like that, it's hard to get published. I don't think that's encouraging people to think about radically new ideas."

-- Geoff Hinton, 2018 interview with Wired

2. Benchmarks are often easily gamed

Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference

R. Thomas McCoy,¹ Ellie Pavlick,² & Tal Linzen¹

¹Department of Cognitive Science, Johns Hopkins University ²Department of Computer Science, Brown University tom.mccoy@jhu.edu,ellie_pavlick@brown.edu,tal.linzen@jhu.edu

Abstract

A machine learning system can score well on a given test set by relying on heuristics that are effective for frequent example types but break down in more challenging cases. We study this issue within natural language inference (NLI), the task of determining whether one sentence entails another. We hypothesize that statistical NLI models may adopt three fallible syntactic heuristics: the lexical overlap heuristic, the subsequence heuristic, and the constituent heuristic. To determine whether models have adopted these heuristics, we introduce a controlled evaluation set called HANS (Heuristic Analysis for NLI Systems), which contains many examples where the heuristics fail. We find that models trained on MNLI, including BERT, a state-of-the-art model, perform very poorly on HANS, suggesting that they have indeed adopted these heuristics. We conclude that there is substantial room for improvement

example, neural networks trained to recognize objects are misled by contextual heuristics: a network that is able to recognize monkeys in a typical context with high accuracy may nevertheless label a monkey holding a guitar as a human, since in the training set guitars tend to co-occur with humans but not monkeys (Wang et al., 2018). Similar heuristics arise in visual question answering systems (Agrawal et al., 2016).

The current paper addresses this issue in the domain of natural language inference (NLI), the task of determining whether a **premise** sentence entails (i.e., implies the truth of) a hypothesis sentence (Condoravdi et al., 2003; Dagan et al., 2006; Bowman et al., 2015). As in other domains, neural NLI models have been shown to learn shallow heuristics, in this case based on the presence of specific words (Naik et al., 2018; Sanchez et al., 2018). For example, a model might assign a label of contradiction to any input containing the word not since

"A machine learning system can score well on a given test set by relying on heuristics that are effective for frequent example types but break down in more challenging cases."

Nasrin Mostafazadeh @nasrinmmm · 10/30/19

I totally agree with @GaryMarcus. Building a reliable NLU benchmark that is not prone to exploitation of data intricacies by models is very challenging; and more often than not we are not even lucky enough to uncover such cases (we were lucky in the case of Story Cloze Test v1).



The problem is that I believe that what will happen is that you will simply wind up spawning a whole host of new and ultra-clever brute-force techniques to solve the "Winograd Challenge" without solving the problem of understanding whatsoever. Getting people to spend huge amounts of time on just one kind of challenge is not going to be helpful. In fact, I fear it will be counterproductive, because I don't think that anyone who will be moved to tackle this particular challenge is likely to take up the deeper and more general challenge of what language understanding really is. People are daunted by that, as well they should be, and no one is going to be motivated by a prize to suddenly tackle that gigantic challenge. Instead, very smart engineering types are going to be motivated to seek clever tricks that will allow computers to solve this very narrow type of linguistic disambiguation problem with a high degree of accuracy.

Douglas Hofstadter, email of February 5, 2011 to Ernie Davis

which relates to The Kaggle Effect

These successes demonstrate the importance of setting clear goals and adopting objective measures of performance that are shared across the research community. However, optimizing for a single metric or set of metrics often leads to tradeoffs and shortcuts when it comes to everything that isn't being measured and optimized for (a well-known effect on Kaggle, where winning models are often overly specialized for the specific benchmark they won and cannot be deployed on real-world versions of the underlying problem). In the

Chollet 2019

3. Good benchmarks take a lot of of time to develop

Nasrin Mostafazadeh @nasrinmmm

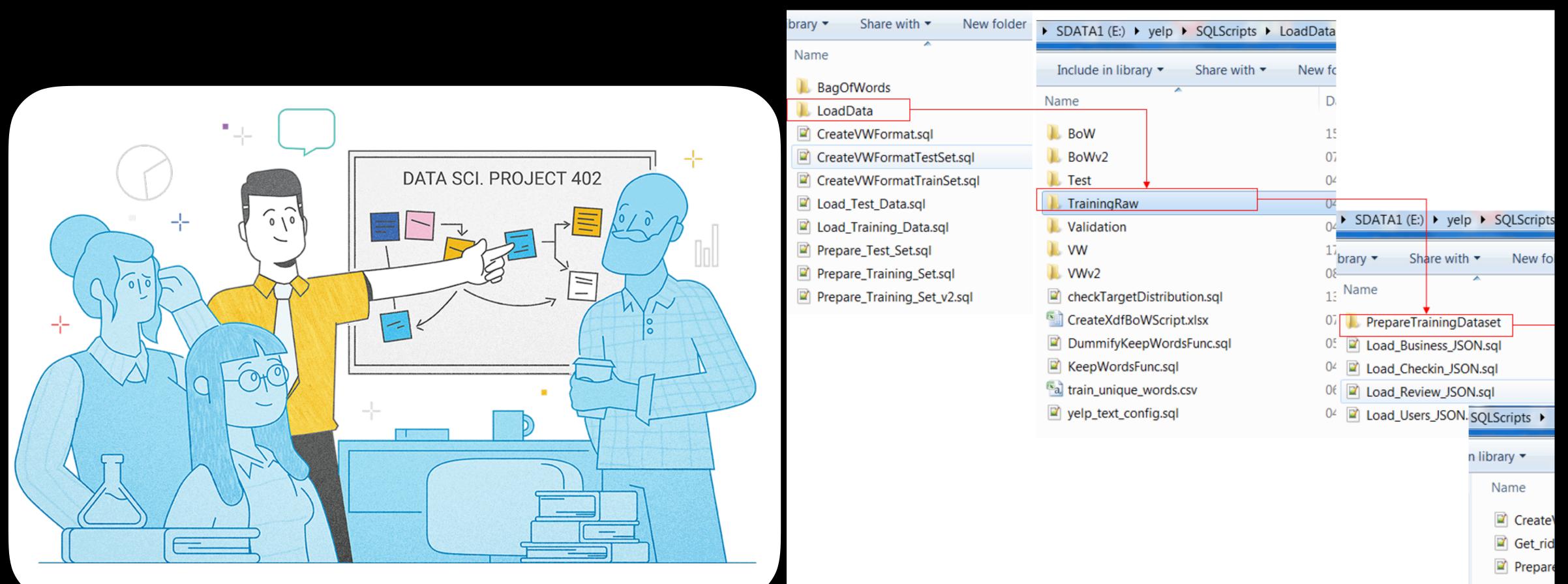
highlighting the strengths and weaknesses of our SOTA AI models. I'd rather us, as a community, work for many months if not years towards curating a better and more meaningful benchmark than producing a new one every month!

- Benchmarks take time to develop

• The specific idea we will introduce today is only about a month into development (talk invite came last week)

new benchmark certainly not finalized yet, let alone adversarially vetted

4. Benchmarks are prepackaged; human experience rarely is



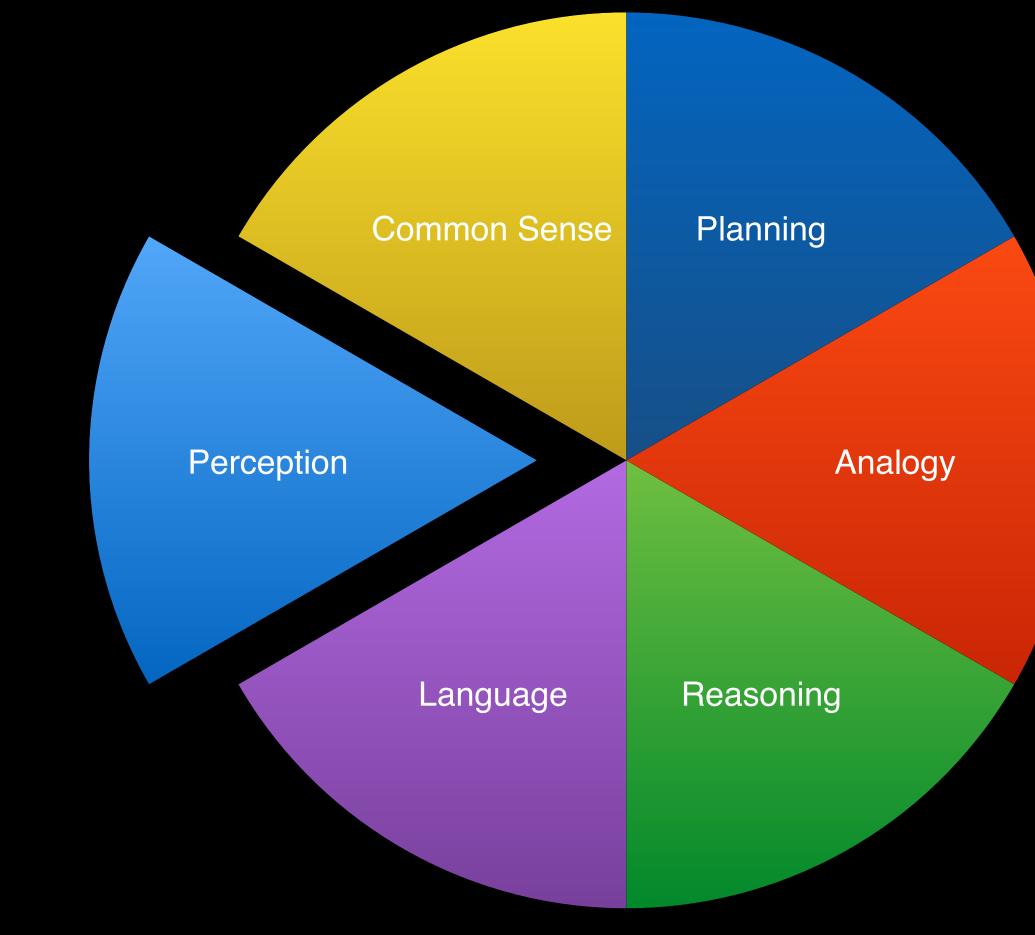
Life is not a Kaggle competition.

5. We shouldn't expect any single benchmark to suffice

"There is no one way the mind works, because the mind is not one thing. Instead, the mind has parts, and the different parts of the mind operate in different ways: Seeing a color works differently than planning a vacation, which works differently than understanding a sentence, moving a limb, remembering a fact, or feeling an emotion."

-- Chazz Firestone and Brian Scholl

- Intelligence is clearly multidimensional
- Deep understanding involves many facets of intelligence



Advice to Young Scholars

- Don't wait for the field to make you a formal, Kaggle-ready benchmark. Notice a dataset, or even just a question, and create your own challenges.
 - Don't just look to what the ML community has published
 - Example: there's plenty of extant data in the form of experiments in fields like psychology and psycholinguistics that is ripe for exploration.
 - And plenty of work suggesting other challenges that could be developed
 - And don't forget that children rarely get their data in neatly packaged form.

Related Aside: Twitter's rumors to the contrary, this is hardly the first time I have presented a specific challenge to the field

Children's Overregularization Errors

- 1992
- widely modeled throughout the 1990s
- debate simmered down, still AFAIK no model that really captures all of the longitudinal and lexical data we presented
- not packaged as a benchmark with a pre-made corpus, but kids aren't given a pre-made corpus, either

Overregularization in Language Acquisition

Gary F. Marcus Steven Pinker Michael Ullman Michelle Hollander T. John Rosen Fei Xu

Harradal, & Tadasarra

Marcus et al (1999, Science)

Rule Learning by Seven-Month-Old Infants

G. F. Marcus, * S. Vijayan, S. Bandi Rao, P. M. Vishton

A fundamental task of language acquisition is to extract abstract algebraic rules. Three experiments show that 7-month-old infants attend longer to entences with unfamiliar structures than to sentences with familiar structures The design of the artificial language task used in these experiments ensured that this discrimination could not be performed by counting, by a system that is sensitive only to transitional probabilities, or by a popular class of simple neural network models. Instead, these results suggest that infants can represent. extract, and generalize abstract algebraic rules.

new sentences that were consistent with this

One learning mechanism that young infants phrase and that "reminded Sam of Tibetan can exploit is statistical in nature. For art" is a well-formed verb phrase with example, Saffran et al. (1) found that the plural agreement, we can infer that "The syllables or prosody. looking behaviors of 8-month-old infants three blickets reminded Sam of Tibetan indicated a sensitivity to statistical art." is a well-formed sentence. nformation inherent in sequences of speech ounds produced in an artificial language-or example, transitional probabilities, whether young infants can actually learn which are estimates of how likely one item simplified versions of such algebraic rules. s to follow another. In the corpus of A number of previous experiments drawn inconsistent items t inconsistent items t from the literature of speech perception of consistent items. oves oranges." the transitional probability (not aimed at the question of rule learning) tween the words "the" and "boy" is are consistent with the possibility that

that track statistical information, or only statistical tendencies. For example, 16 infants were randomly assigned to either simple recurrent network (SRN) (2)], may suffice for language learning (3). The alternative possibility considered here is syllable word might have noticed a that children might possess at least two violation of a rule (for example, "all the followed an ABA grammar, such as "gat learning mechanisms, one for learning words here are two syllables"), but an infant ga" and "li na li." In condition ABB, infant statistical information and another for could also have succeeded with a statistical arning "algebraic" rules (4)--open-ended device that noted that the three-svllable substitute arbitrary items. For instance, we number of syllables in the preceding an substitute any value of x into the utterator. Similarly, Gomez and Gerken (6) in the test phase, we presented infants who were habituated to a with 12 sentences that consisted entirely of the test phase.

G. F. Marcus, S. Vijayan, S. Bandi Rao, Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA. P. M. Vishton, Department of Psychology, Amherst College, Amherst,

To whom correspondence should b addressed. E-mail: gary.marcus@nyu.edu.

atistical information such as transition obabilities (for example, in the training orpus, VOT was never followed by AM)--without recourse to a rule. We tested infants in three exper-

n which simple statistical or counting chanisms would not suffice to learn the ule that was generating the sequences o words. In each experiment, infants were abituated to three-word sentence tructed from an artificial language (7 and then tested on three-word sentence omposed entirely of artificial words that did not appear in the habituation. The test sentences varied as to whether they were ent or inconsistent with the gramm of the habituation sentences. Because none of the test words appeared in the habituation phase, infants could not distinguish the test sentences based on itional probabilities, and because the What learning mechanisms are available to as soon as we discover that "the three infants on the cusp of language learning? blickets" is a well-formed plural noun were generated by a computer, the infant could not distinguish them based statistical properties such as number of

> We tested infants with the familiarization preference procedure as To date, however, there has been no adapted by Saffran et al. (1, 8, 9); if infant can abstract the underlying structure and generalize it to novel words, they should attend longer during presentation of the inconsistent items than during presentation

Subjects were 7-month-old infant who were younger than those studied by 1.0 but the transitional probability between infants might learn algebraic rules, but each Saffran et al, but still old enough to be able the words "loves" and "apples" is 1/2 = 0.5. of these prior experiments could be to distinguish words in a fluent stream of the stream of t connectionist models that rely on similar infants who are habituated to a series of an "ABA" condition or an "ABB" sorts of information [for example, the two-syllable words attend longer when condition. In the ABA condition, infants were familiarized with a comparable speech sample in which all training sent bstract relationships for which we can word had more syllables than the average followed an ABB grammar, such as "ga ti ti" and "li na na" (11).

that in English a sentence can be formed by set of sentences constructed from an new words, such as "wo fe wo" or "wo fe ating any plural noun phrase with artificial grammar (VOT-PEL-JIC; PEL- fe" (12). Half the test trials were "consistent any verb phrase with plural agreement, then TAM-PEL-JIC) could distinguish between sentences," constructed from the same grammar as the one with which the infar grammar (VOT-PEL-TAM-PEL-JIC) from was familiarized (an ABA test sentence for new sentences that were not consistent infants trained in the ABA condition and an (VOT-TAM-PEL-RUD-JIC). Such learning might reflect the acquisition of rules, but ABB sentence for infants trained in the ABB condition), and half the test trials because all the test sentences were were "inconsistent sentences" that we constructed with the same words as in the constructed from the grammar on which the habituation sentences (albeit rearranged), in infant was not trained (13) these test sentences it was possible to

We found that 15 of 16 infants showed distinguish the test sentence on the basis of a preference for the inconsistent sentences

2 min habituation, followed by test string

looking times as a measure of attention

- la ti ti, ga na na, etc ightarrow
- test trials consisted of all new vocabulary, using new set of phonemes
- some with same grammar, some with different grammar
 - eg wo fe fe [ABB] vs wo wo fe [AAB] ightarrow
 - infants looked longer to items following new grammar
- abstraction naturally described in terms of operations over variables, not so easily captured by traditional neural nets

Infant rule learning

- many models were proposed in 1999
- reviewed most in 2001
- still an area of active research, even in 2019
- also many follow up experiments, extensions to younger children etc
- not published in ML journals, but key paper was published in Science, reviewed in The Algebraic Mind
- Highly relevant to ML, and an example of out-of-core-discipline work that could strengthen ML

Psychonomic Bulletin & Review

---- August 2019, Volume 26, <u>Issue 4</u>, pp 1174–1194 | <u>Cite as</u>

A review of computational models of basic rule learning: The neural-symbolic debate and beyond

Authors

Authors and affiliations

Raquel G. Alhama 🖂 , Willem Zuidema

Open Access | Theoretical Review First Online: 28 May 2019

75	3k
Shares	Downloads

Abstract

We present a critical review of computational models of generalization of simple grammar-like rules, such as ABA and ABB. In particular, we focus on models attempting to account for the empirical results of Marcus et al. (*Science, 283*(5398), 77–80 <u>1999</u>). In that study, evidence is reported of generalization behavior by 7-month-old infants, using an Artificial Language Learning paradigm. The authors fail to replicate this behavior in neural network simulations, and claim that this failure reveals inherent limitations of a whole class of neural networks: those that do not incorporate symbolic operations. A great number of computational models were proposed in follow-up studies, fuelling a heated debate about what is required for a model to generalize. Twenty years later, this debate is still not settled. In this paper, we review a large number of the proposed models. We present a critical analysis of those models, in terms of how they contribute to answer the most relevant questions raised by the experiment. After identifying which aspects require further research, we propose a list of desiderata for advancing our understanding on generalization

COGNITION

Cognition 83 (2002) 113-139

www.elsevier.com/locate/cognit

The scope of linguistic generalizations: evidence from Hebrew word formation

Iris Berenta,*, Gary F. Marcusb, Joseph Shimron^c, Adamantios I. Gafos^d

*Department of Psychology, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA ^bDepartment of Psychology, New York University, New York, NY, USA School of Education, University of Halfa, Halfa, Israel ^aDepartment of Linguistics, New York University, New York, NY, USA

Received 6 Match 2001; received in revised form 6 September 2001; accepted 14 November 2001

Abstract

Does the productive use of language stem from the manipulation of mental variables (e.g. "noun", "any consonant")? If linguistic constraints appeal to variables, rather than instances (e.g. "dog", "m"), then they should generalize to any representable novel instance, including instances that fall beyond the phonological space of a language. We test this prediction by investigating a constraint on the structure of Hebrew roots. Hebrew frequently exhibits geminates (e.g. ss) in its roots, but it strictly constraints their location: geminates are frequent at the end of the root (e.g. mss), but rare at its beginning (e.g. ssm). Symbolic accounts capture the ban on root-initial geminates as *XXY, where X and Y are variables that stand for any two distinct consonants. If the constraint on root structure appeals to the identity of abstract variables, then speakers should be able to extend it to root geminates with foreign phonemes, including phonemes with foreign feature values. We present findings from three experiments supporting this prediction. These results suggest that a complete account of linguistic processing must incorporate mechanisms for generalization outside the representational space of trained items. Mentally-represented variables would allow speakers to make such generalizations. @ 2002 Elsevier Science B.V. All rights reserved.

Keywords: Language; Linguistic generalizations; Hebrew word formation

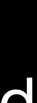
1. Introduction

Productivity is at the core of linguistic competence (Chomsky, 1980): speakers routinely produce and comprehend numerous sentences they have never heard before.

Adult generalization of inflection to foreign phonemes

- Series of papers with Iris Berent around 2002
- Ongoing focus, eg work by Joe Pater later year
 - Not well-known in ML community, fairly wellknown among those following computational models of linguistics
- Not framed as a Kaggle set, but not captured by current language models

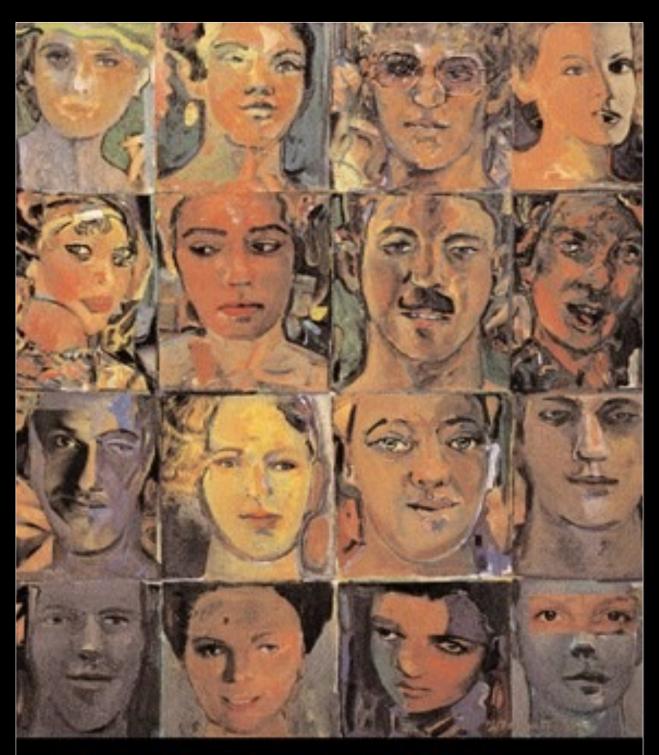




^{*} Corresponding author, Fax: +1.561-297-2160.

E-mail address: ibeient@fau.edu (I. Beient).

^{0010-0277/02/§ -} see front matter @ 2002 Elsevier Science B.V. All rights reserved. PII: S0010-0277(01)00167-6



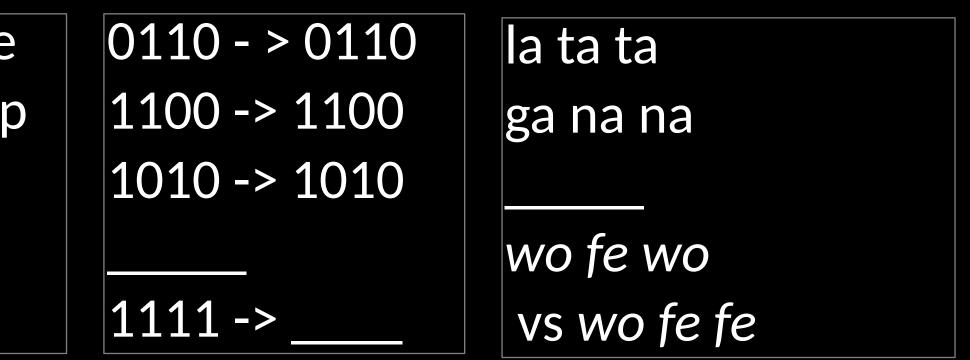
The Algebraic Mind Integrating Connectionism and Cognitive Science Gary F. Marcus

A rose is a rose A tulip is a tulip A lilac is a lilac

A lily is a

"multilayer perceptron[s] cannot generalize [a certain class of universally quantified function] outside the training space. .. In some cases it appears that humans can freely generalize from restricted data, [in these cases a certain] class of multilayer perceptions that are trained by back-propagation are inappropriate" - Marcus, 2001

All these are examples of free generalization of universally quantified one-to-one-mappings [UQOTOMs]



Marcus et al, 1999, Science w 7-month-olds later replicated (inter alia) by Gervain et al, 2012 w newborns

Tweet

Steven Hansen @Zergylord · 8/28/19

A @OpenAl GPT-2 prompt taken from @GaryMarcus's The Algebraic Mind, showing what neural nets couldn't do. Sometimes a quantitative change in model/data complexity can give rise to qualitatively different behavior.

 \sim

 \sim

ılt

Prompt:	A rose is a rose.	
Generated completion:	A lily is a lily.	
	A blicket is a blicket.	
	A hoop is a hoop.	
	A crook is a crook.	
	A tine is a tine.	
	And it was a day like this when a girl, when she heard someone call	
	her by her name,	
	But her heart beat for the sun.	
	That's what a little girl thinks about day by day.	
	A day like this is where she starts to live,	
	But the sun isn't there to welcome the girl with her.	
	That's where she starts thinking about life,	
	Her face's the face of something she needs,	

1]8 Q 1 30

Gary Marcus @GaryMarcus · 8/28/19

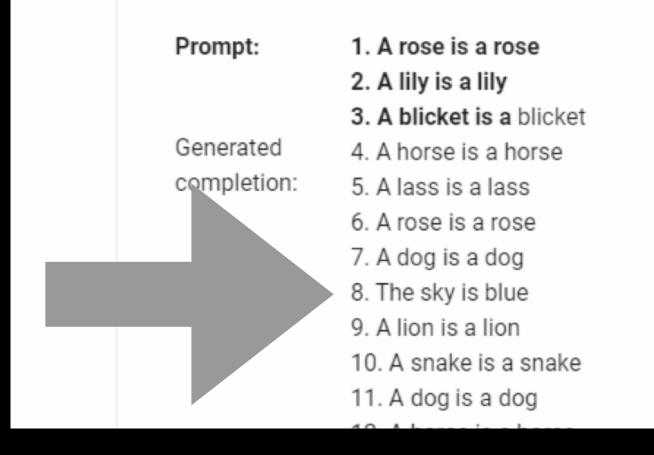
honored and flattered and it's very very cute, but it still can't just stick to the pattern...

⚠

⚠

Q 1

♡5



Even today there are challenges in learning UQOTMS in systems that lack operations over variables

Language

- Lake and Baroni (2018)
- Evans & Greffenstette (2018)

Number

Adding 1+1+1...1 where number of 1's > 6 [successor function, where each n has a unique output)

Other insights Examining the performance on adding multiple integers, we tested the models on adding $1 + 1 + \cdots + 1$, where 1 occurs n times. Both the LSTM and Transformer models gave the correct answer for $n \leq 6$, but the incorrect answer of 6 for n = 7 (seemingly missing one of the 1s), and other incorrect values for n > 7. (The models are trained on sequences of random integers up to length 10, and are capable of giving the correct answer on longer sequences of far bigger numbers, for example -34 + 53 + -936 + -297 + 162 + -242 + -128.) We do not have a good explanation for this behaviour; one hypothesis is that the models calculate subsums and then combine these, but rely on different input numbers to align the subsums, and fail when the input is "camouflaged" by consisting of the same number repeated multiple times.

[Saxton et al 2019]

Only now is the importance of this issue started to become recognized

A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

Yoshua Bengio^{1,2,5}, Tristan Deleu¹, Nasim Rahaman⁴, Nan Rosemary Ke³, Sébastien Lachapelle¹, Olexa Bilaniuk¹, Anirudh Goyal¹ and Christopher Pal^{3,5} Mila, Montréal, Québec, Canada

- ¹ Université de Montréal
- ² CIFAR Senior Fellow
- ³ École Polytechnique Montréal
- ⁴ Ruprecht-Karls-Universität Heidelberg
- ⁵ Canada CIFAR AI Chair

1. Introduction

Current machine learning methods seem weak when they are required to generalize beyond the training distribution, which is what is often needed in practice. It is not enough to obtain good generalization on a test set sampled from the same distribution as the training data, we would also like what has been learned in one setting to generalize well in other related distributions. These distributions may involve the same concepts that were seen previously by the learner, with the changes typically arising because of actions of agents. More generally, we would like what has been learned previously to form a rich base from which very fast adaptation to a new but related distribution can take place, i.e., obtain good transfer. Some new concept may have to be learned but because most of the other relevant concepts have already been captured by the learner (as well as how they can be composed), learning can be very fast on the transfer distribution. In

Turing Olympics

- 2015 AAAI session
- Rossi and Veloso

• 2016 special issue of AI magazine, "Beyond the Turing Test". coedited with

About 7 different challenges proposed

comprehension

social cognition

"Ikea"-like assembly, etc

• Only two (Winograd Schema Challenge, and grade school science exams) have been addressed in the literature

Lots of stuff there still worth working on

Toward a Comprehension Challenge, Using Crowdsourcing as a Tool

Praveen Paritosh, Gary Marcus

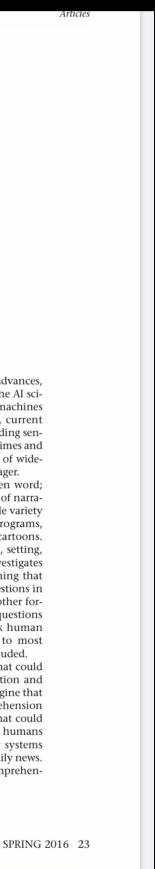
Human readers comprehend vastly more, and in vastly different ways, than any existing comprehension test would suggest. An ideal comprehension test for a story should cover the full range of *questions and answers that humans* would expect other humans to reasonably learn or infer from a given story. As a step toward these goals we propose a novel test, the crowdsourced compre hension challenge (C³), which is constructed by repeated runs of a three-per son game, the Iterative Crowdsourcea Comprehension Game (ICCG). ICCG uses structured crowdsourcing to comprehensively generate relevant questions and supported answers for arbitrary stories, whether fiction or nonfiction, presented across a variety of media such as videos, podcasts, and still images.

rtificial Intelligence (AI) has made enormous advances, yet in many ways remains superficial. While the AI sci-A entific community had hoped that by 2015 machines would be able to read and comprehend language, current models are typically superficial, capable of understanding sentences in limited domains (such as extracting movie times and restaurant locations from text) but without the sort of widecoverage comprehension that we expect of any teenager.

Comprehension itself extends beyond the written word; most adults and children can comprehend a variety of narratives, both fiction and nonfiction, presented in a wide variety of formats, such as movies, television and radio programs, written stories, YouTube videos, still images, and cartoons. They can readily answer questions about characters, setting, motivation, and so on. No current test directly investigates such a variety of questions or media. The closest thing that one might find are tests like the comprehension questions in a verbal SAT, which only assess reading (video and other formats are excluded) and tend to emphasize tricky questions designed to discriminate between strong and weak human readers. Basic questions that would be obvious to most humans — but perhaps not to a machine — are excluded.

Yet is is hard to imagine an adequate general AI that could not comprehend with at least the same sophistication and breadth as an average human being, and easy to imagine that progress in building machines with deeper comprehension could radically alter the state of the art. Machines that could comprehend with the sophistication and breadth of humans could, for instance, learn vastly more than current systems from unstructured texts such as Wikipedia and the daily news. How might one begin to test broad-coverage comprehension in a machine?

Copyright © 2016, Association for the Advancement of Artificial Intelligence, All rights reserved, ISSN 0738-4602

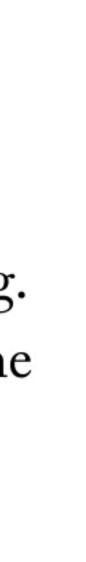


Comprehension challenge

allow me to propose a Turing Test for the twenty-first century: build a computer program that can watch any arbitrary TV program or YouTube video and answer questions about its content -"Why did Russia invade Crimea?" or "Why did Walter White consider taking a hit out on Jessie?" Chatterbots like Goostman can hold a short conversation about TV, but only by bluffing. (When asked what "Cheers" was about, it responded, "How should I know, I haven't watched the show.") But no existing program—not Watson, not Goostman, not Siri—can currently come close to doing what any bright, real teenager can do: watch an episode of "The Simpsons," and tell us when to laugh.

- first proposed 2014 in The New Yorker
- systems that produce fluent prose but lack deep understanding

need for something like this still seems urgent, for the same reasons: we have



quick recap

- In my view, all of those are leads still worth pursuing
 - I am a cognitive scientist and wasn't raised as ML person, but I have certainly given a lot of hints
 - If I had infinite free time or any free time I might pursue them
 - Would be happy to advise anyone who wishes to develop any of them further
- For today, we will focus on a new suggestion, because we think it fits especially closely with the where the field is stuck right now....

Toward a benchmark for Dynamic Understanding

as a step towards AI with deeper understanding

A benchmark or a set of benchmarks that requires an agent to

- develop internal models about what is happening in a some text (or video, etc)
- accumulate and update information over time
- make everyday inferences about what is happening

Goal

Distinguished from static understanding

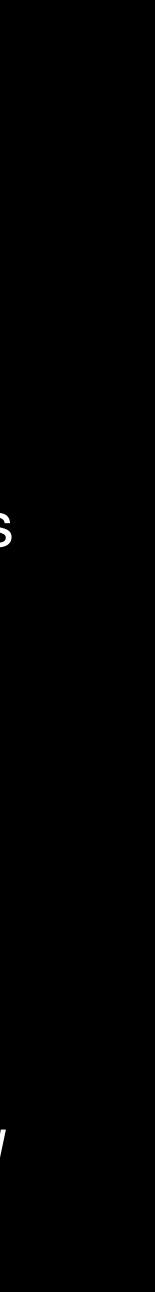
- ordinary circumstances
 - knives are for cutting
 - waters turns to ice when left inside a freezer
- \bullet
 - piecemeal fashion
 - very little dynamic understanding

Static understanding: conventional knowledge about what happens in general/generic/

We anticipated that current transformer-based systems would be able to capture

• some degree of static understanding-highly dependents on species of corpus, in a

- We are *not* claiming that our task is sufficient to capture all aspects of NLU
- We are not claiming that our task is the only way to improve NLU benchmarks
 - Lot of good other ideas out there, too, like the HANS entailment task, the notion of using humans in an adversarial loop, Yejin Choi lab work on counterfactuals and commonsense, etc
 - We don't expect any single task to suffice
- We do think that too few existing tasks look directly at dynamic understanding



Thus far, we have devised 6 subtasks

- Two for static understanding
- Four for dynamic understanding
- The six tasks are illustrative not exhaustive
 - they give a flavor of the questions in the ultimate benchmark
 - but we don't want people to train to the specific tasks
 - the benchmark itself may dynamically evolve
 - we welcome further suggestions of similar flavor.

Static task 1: Conventional Knowledge

- factual knowledge
- Q: The part of a fish that gives its body rigidity is ______
- A (Common acceptable answers): spine, skeleton

Task 1 - Conventional Knowledge: Tests understanding of everyday

- nothing too technical for the average person here
- Q: When the moon blocks the sun we call it a(n) ______
- A: eclipse

Static task 2: Definitions

• Task 2 - Definitions: Assesses knowledge of definitions of common concepts;

Dynamic Task 1: Transformations

- are either plausible or implausible
- Q: Making a salad out of a polyester shirt would be
- A: Implausible {Impossible/Hard, etc]

• Task 3 - Transformations: Tests understanding of processes and actions that

Dynamic Task 2: Atypical Consequences

- happens?
- Q: If you pour a cup of ice into a roaring campfire, it is likely to
- A: Melt, Sublimate

Task 4 - Atypical Consequences: What happens when something unusual

Dynamic Task 3: Entity Tracking

- Task 5 Entity Tracking: A bunch of people or animals or objects that are identifiable do something, and reader must keep track
- banker leave. the person who is left is the _____
- A: accountant

Q: An accountant, a lawyer, and a banker walk into a room; the lawyer and

Dynamic Task 4: Quantity Tracking

- entities
- Q: A little girl has five balloons. One pops, leaving
- A: Four

 Task 6 - Quantity Tracking: Some quantifiable number of entities are described, in some sort of context, and some action takes place that changes the number of

Piot

- In each category we had over forty submissions
- thank you!

We asked (via twitter @garymarcus) for volunteers to write questions

Setup

- **Data:** Collected ~40 Q/A pairs per task (after removing instances containing) errors), via crowdsourcing; volunteers were given one example of each task.
 - Most of the questions were well-formed (grammatical, interpretable, etc, with clearly defined answers that should be known to any ordinary Western adult)
 - We also received some useful feedback from the community (eg. it would be good to develop a version that was not reliant on culturallyspecific knowledge; we agree)
- Task: The goal for each task is for the model to predict the answer correctly; see subsequent slide
- **Models**: 5 recent language models, 4 similar to GPT-2; BERT. All code and models using Transformers by HuggingFace https://github.com/huggingface/transformers

Conditional Language Generation Models

- >100 GB using 32.9 Billion subword pieces from Common

• **OpenAl GPT**(12-layer, 768-hidden, 12-heads, ~110M parameters, 0.96 petaflop days, Books Corpus): Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever

• Transformers-XL (18-layer, 1024-hidden, 16-heads, ~257M parameters, WikiText-103+English Wikipedia+Text8+1B Word+Penn Tree Bank): Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov

• XL-Net (24-layer, 1024-hidden, 16-heads, ~340M parameters, US\$256K to train*, Crawl+ClueWeb2012b+Giga5+English Wikipedia+Books Corpus): XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

GPT-2 (48-layer, 1600-hidden, 25-heads, ~1558M parameters, US\$256 per hour*, 8 Million webpages): Language Models are Unsupervised Multitask Learners by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**

[MASK]ed Language Models

Kenton Lee and Kristina Toutanova.

• **Bert** (24-layer, 1024-hidden, 16-heads, 340M parameters, US\$6,912*, 13GB consisting of Books Corpus+English Wikipedia): Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang,

Future Evaluations: Recurrent Entity networks

- Successor to Facebook's Memory Networks.
- Work-in-progress
- not a perfect fit

Tracking the World State with Recurrent Entity Networks, Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, Yann LeCun (ICLR 2017)

But note: Geared towards very specialized bAbl tasks, which would require us to map each of our instances to their equivalent bAbl task, so

Procedure

Conditional language models, such as GPT-2.

- We provided a text & elicit a continuation.
- We allowed the model to output 10 words and if any of the words match the answer it was considered correct
- We did some hand-cleaning of data to credit model for correct answers not anticipated by crowdsources

Masked language models, such as BERT.

- We provided some text and compute predictions for a single masked word.
- We alter the query to help BERT understand the desired output's modality (e.g. add pronoun or qualifier, reformulate as question or statement, ...).
- Sample top-5 answers from output layer.

Summary of Tasks

- Task 1 Conventional Knowledge: Tests understanding of everyday factual knowledge
- Task 2 Definitions: Assesses knowledge of definitions of common concepts; nothing too technical for the average person here
- Task 3 Transformations: Tests understanding of processes and actions that are either plausible or implausible
- Task 4 Atypical Consequences: What happens when something unusual happens?
- Task 5 Entity Tracking: A bunch of people or animals or objects that are identifiable do something, and reader must keep track
- Task 6 Quantity Tracking: Some quantifiable number of entities are described, in some sort of context, and some action takes place that changes the number of entities

Overall Performance

	Conditional Language Generation				Masked Words
Model	GPT	Transformer-XL	XL-Net	GPT-2	BERT Top 1
T1-Conventional Knowledge	5.5%	5.2%	14.2%	13.5%	35.5%
T2-Definitions	8.3%	5.4%	8.3%	38.23%	26.5%
T3- Transformations	2.9%	24.2%	11.7%	14.2%	45.5%
T4-Atypical Consequences	24.2%	6.6%	14.2%	21.8%	46.4%
T5-Entity Tracking	8.3%	6.6%	26%	18.7%	36.7%
T6-Quantity Tracking	0%	0%	8.8%	17.6%	16.7%
Average Accuracy	8.2%	8%	13.8%	20.6%	34.5%

Sample Results (Task 1 - Conventional Knowledge)

A: 9, Nine

GPT: Four

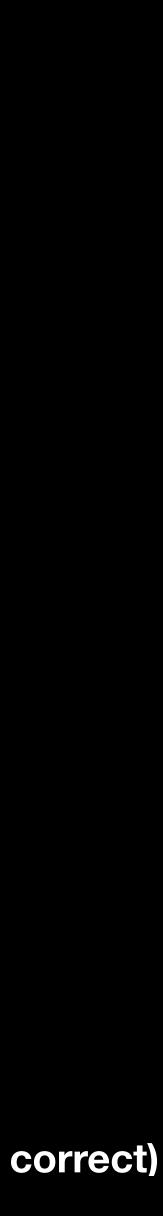
Transformers-XL: reported to be about 50

XL-NET: 0.2

• Q: When playing the first move on a blank tic-tac-toe board, the total number of possible move options is _____

Correct

Questionable (counted as correct)



Sample Results (Task 1 - Conventional Knowledge)

 Q: The colour of the sky is _____ A: blue

GPT: a deep crimson

Transformers-XL: Navy

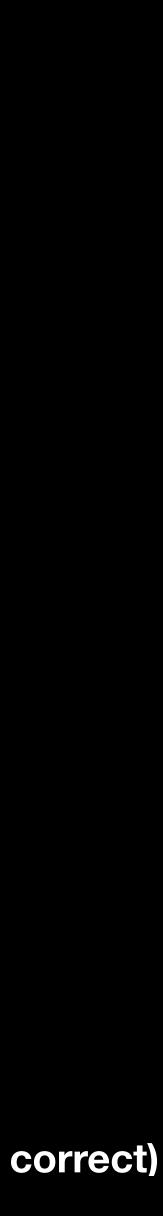
XL-NET: the same colour of the colour of the sea

GPT-2: a sign that the sun has risen or set

BERT: Blue

Correct

Questionable (counted as correct)



Sample Results (Task 1 - Conventional Knowledge)

• Q: The force that keeps people on the surface of the Earth is A: gravity

GPT: also proportional to the energy of the moon.

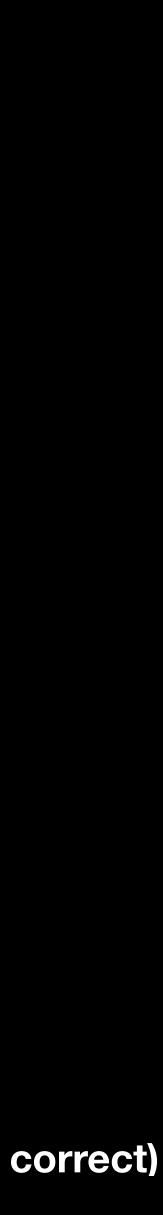
Transformers-XL: called homeothermy

XL-NET: gravitational attraction

GPT-2: mostly buoyancy

Correct

Questionable (counted as correct)



Q: The food group that an apple belongs to is called ______
 A: fruit

GPT: meats and fruits

Transformers-XL: naturally ripe fruit varieties

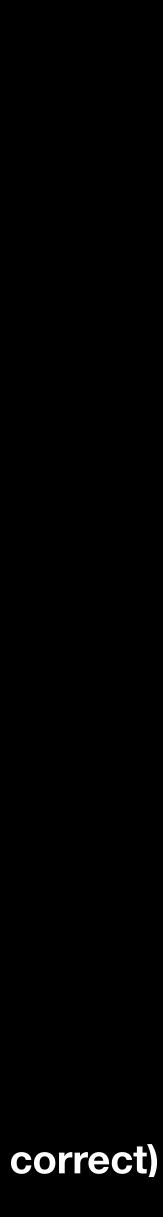
XL-NET: Fruit

GPT-2: its ripeness level. Being on the right side

BERT: Fruit

Correct

Questionable (counted as correct)



Q: When a piece of land is completely surrounded by water, we call it a(n) ______
 A: island

GPT: land of water

Transformers-XL: On the east end is the Tree of Life

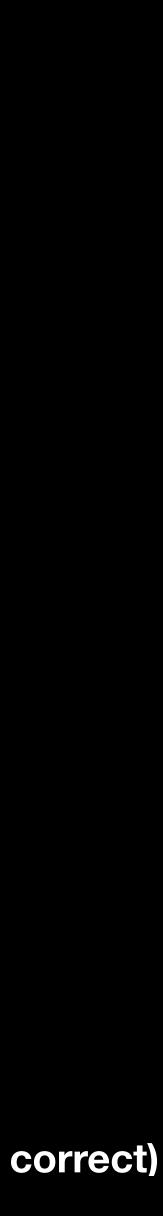
XL-NET: in-a-round

GPT-2: the number of "wasps" within

BERT: Lake

Correct

Questionable (counted as correct)



Q: Waiting at the airport between flights is called a(n)
 A: layover

GPT: flight

Transformers-XL: the pram. These flights take off at 3

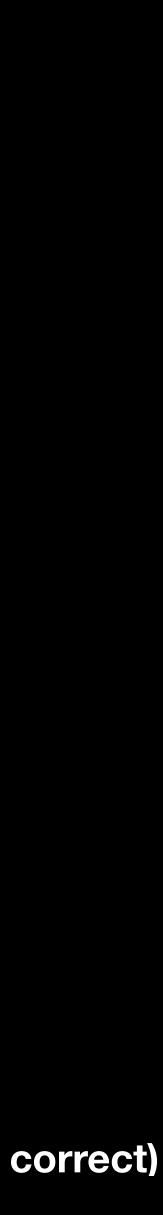
XL-NET: Home

GPT-2: a complimentary mid-flight lounging area

BERT: Delay

Correct

Questionable (counted as correct)



living rooms is often called a _____ A: sofa

GPT: dining table

Transformers-XL: butcher's lawn

XL-NET: treadmill

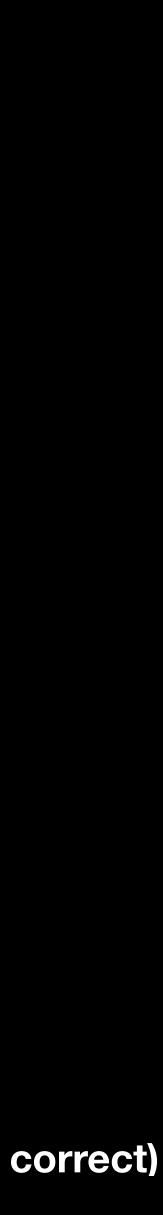
GPT-2: sofa

BERT: sofa

• Q: A soft piece of furniture that people sit on in their

Correct

Questionable (counted as correct)



 Q: When the lightning strikes, we hear a ______ A: thunder

GPT: loud crack of thunder

Transformers-XL: voice

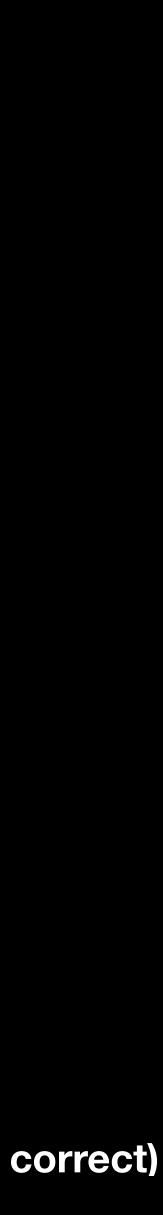
XL-NET: quick crack noise

GPT-2: series of thunderclaps

BERT: noise

Correct

Questionable (counted as correct)



• Q: A large area covered by fresh water is called a A: lake

GPT: Pond

Transformers-XL: pond

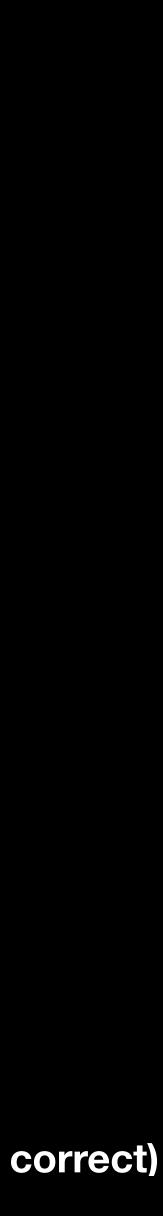
XL-NET: comparatively impoverished area in Asian and African countries

GPT-2: lagoon. Large lakes

BERT: Lake

Correct

Questionable (counted as correct)



Q: When I fall asleep for a short while we call it a(n)_____
 A: nap

GPT: Sex life.

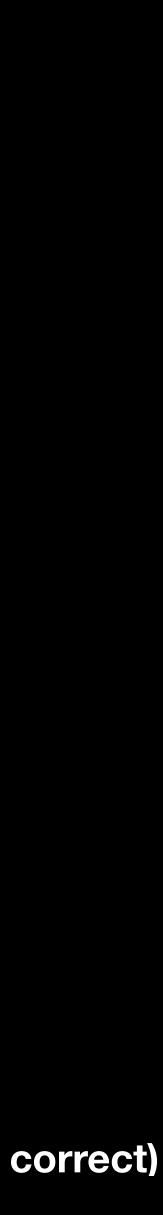
Transformers-XL: dream

XL-NET: a(n) a(n)

GPT-2: day

Correct

Questionable (counted as correct)



Sample Results (Task 3 - Transformations)

Q: Putting ice cream on a banana would be _
 A: plausible

GPT: Nice

Transformers-XL: dangerous

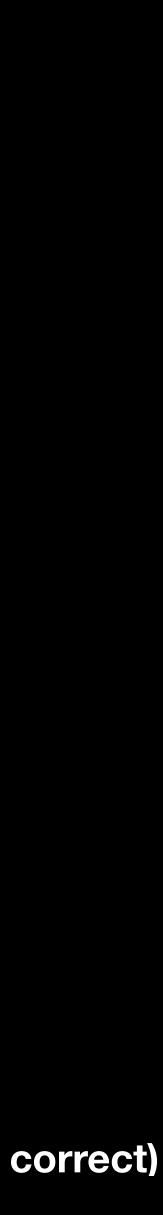
XL-NET: pretty good

GPT-2: Nice

BERT: Fun

Correct

Questionable (counted as correct)



Sample Results (Task 3 - Transformations)

 Q: To laugh out loud at a funeral would be ______ A: Inappropriate

GPT: very unrealistic

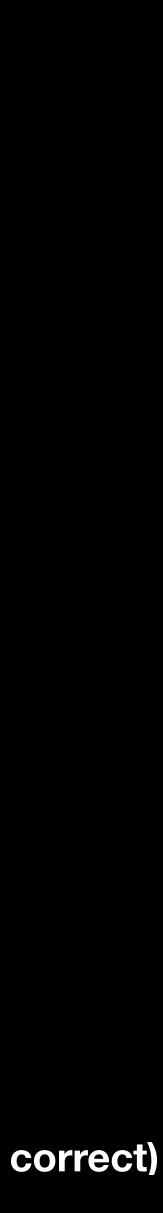
Transformers-XL: seen as a violation of morals

XL-NET: roaring with laughter at an event where everyone was sad

GPT-2: having dinner with some people who were strongly offended by you

Correct

Questionable (counted as correct)



Sample Results (Task 3 - Transformations)

A: Plausible

GPT: absolutely gross.

Transformers-XL: inappropriate

XL-NET: fun

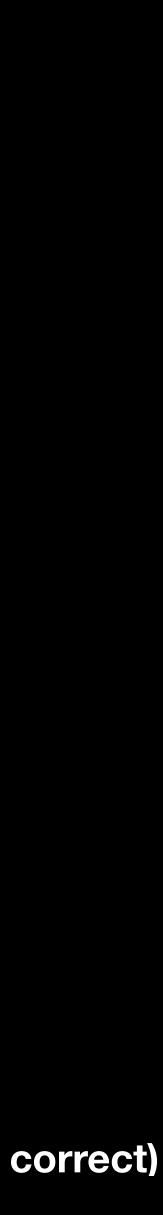
GPT-2: easier with my homemade shield

BERT: fun

Q: Juggling balls without wearing a hat would be _____

Correct

Questionable (counted as correct)



Sample Results (Task 3 - Transformations)

A: Implausible

GPT: normal behavior

Transformers-XL: dangerous enough

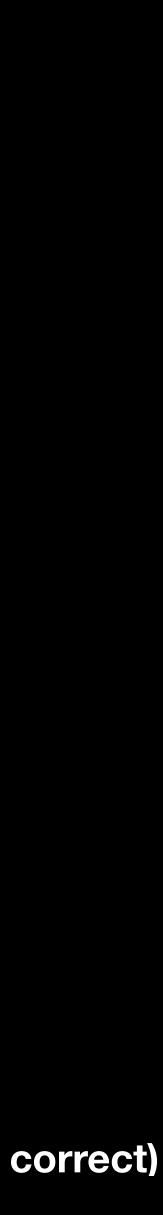
XL-NET: extremely inconvenient

GPT-2: fine

BERT: hard

Correct

Questionable (counted as correct)



Sample Results (Task 3 - Transformations)

Q: Unscrambling an egg would be _____
 A: Implausible

GPT: very hard indeed

Transformers-XL: double

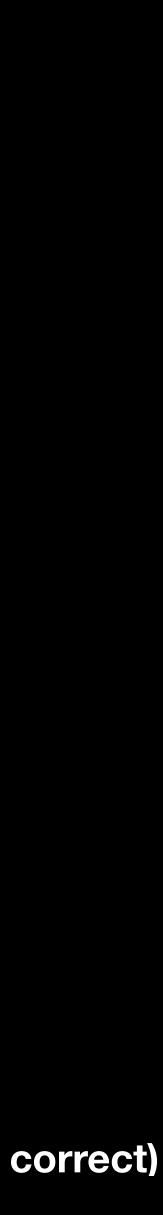
XL-NET: hard enough without a pro

GPT-2: even more tedious

BERT: impossible

Correct

Questionable (counted as correct)



Sample Results (Task 4 - Atypical Consequences)

Q: If an adult sits on an to _____
 A: collapse

GPT: be escorted away, be left in peace.

Transformers-XL: be coated by a layer of sun water

XL-NET: be leftover cereal

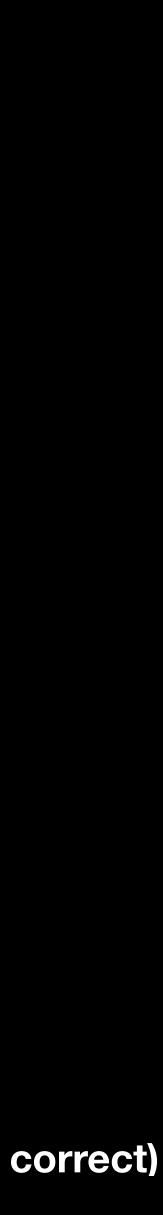
GPT-2: be overweight

BERT: collapse

• Q: If an adult sits on an empty cardboard box, it is likely

Correct

Questionable (counted as correct)



Sample Results (Task 4 - A typical Consequences)

 Q: If you throw a dog into the sun, it is likely to ______ A: die

GPT: surface a few minutes later

Transformers-XL: kill you

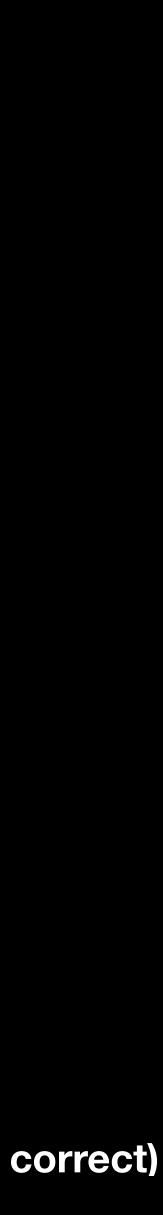
XL-NET: stand up and run away.

GPT-2: die

BERT: die

Correct

Questionable (counted as correct)



Sample Results (Task 4 - Atypical Consequences)

Q: If you drop a feather on the moon, it will ______
A: drop straight down to the surface

GPT: fall down

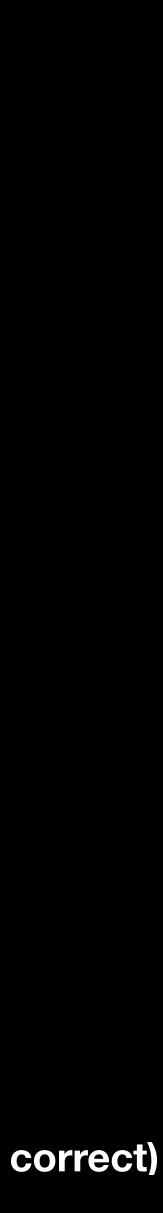
Transformers-XL: actually yield a crown like a baby rhinoceros

XL-NET: appear as a star or a cloud on the night

GPT-2: fall back

Correct

Questionable (counted as correct)



Sample Results (Task 4 - A typical Consequences)

Q: When you put a plant will ______
 A: freeze, die

GPT: freeze and burst into the air.

Transformers-XL: explode

XL-NET: slowly grow as it is forced to cool down

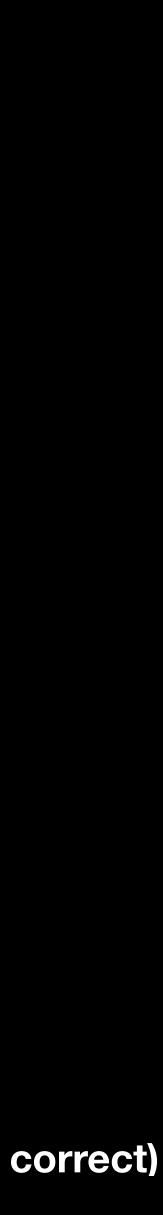
GPT-2: lose some of its moisture

BERT: freeze

• Q: When you put a plant into a freezer for a long time it

Correct

Questionable (counted as correct)



 Q: elephant, mammoth and mammals. Mammoth and The living one is the _____
 A: elephant

GPT: Elephant

Transformers-XL: largest ungulate ever seen. The extinct mastodon

XL-NET: elephant

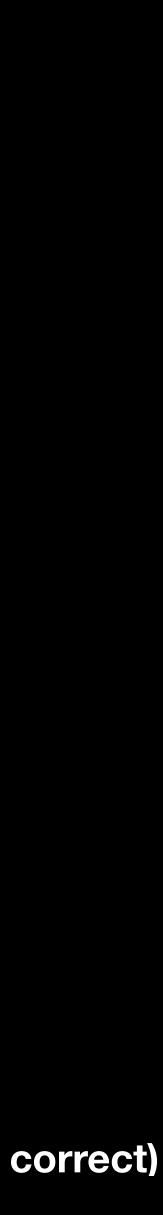
GPT-2: Brown Bear

BERT Elephant

• Q: elephant, mammoth and Mastodon are similar large mammals. Mammoth and Mastodon have become extinct.

Correct

Questionable (counted as correct)



the. A: pilot

GPT: pilot

Transformers-XL: doctor

XL-NET: pilot

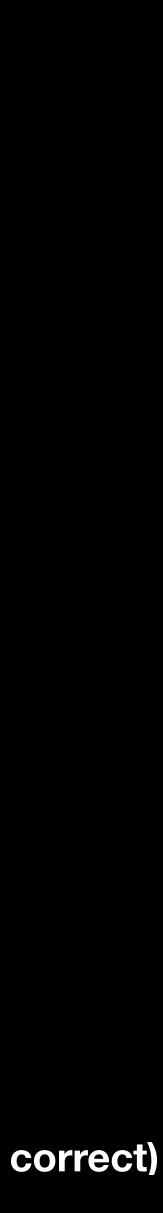
GPT-2: pilot

BERT: pilot

• Q: A policeman, a police dog, and a pilot enter a plane; the policeman and police dog leave. The person who is left is

Correct

Questionable (counted as correct)



pencil, the only thing left is the, _____ A: pen

GPT: business card

Transformers-XL: aircraft

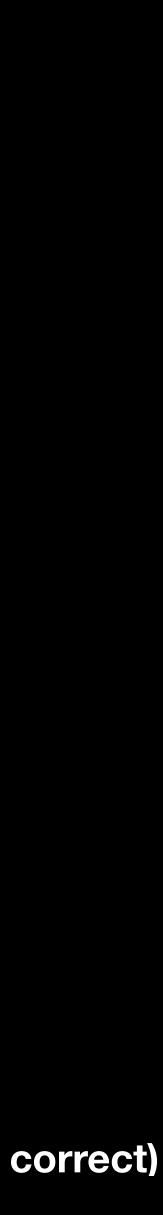
XL-NET: paper

BERT: Pen

• Q: There are three items on my desk. A pair of scissors, a pen and a pencil. After putting away the scissors and the

Correct

Questionable (counted as correct)



successfully. The person who is left is _ A: nobody

GPT: the astronaut

Transformers-XL: the astronaut's experience

XL-NET: a scientist

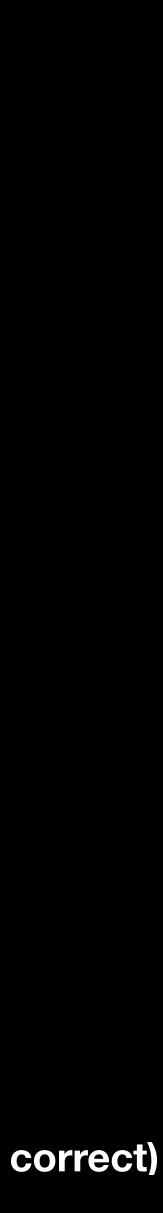
GPT-2: the astronaut

BERT: Nobody

Q: An astronaut, a technician, and a journalist walk onto a launchpad; the technician helps the astronaut get inside a rocket; the technician and journalist leave; the rocket launches

Correct

Questionable (counted as correct)



A: at the dry cleaners

GPT: i look around, not seeing anything

Transformers-XL: I left a cup of coffee

XL-NET: ?!?!?!

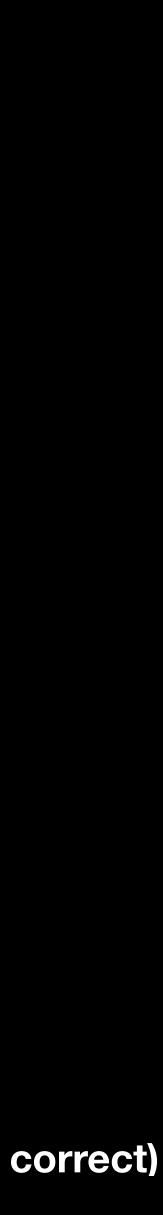
GPT-2: at my mom's house

BERT: Closet

• Q: Yesterday I dropped my clothes off at the dry cleaners and have yet to pick them up. Where are my clothes?

Correct

Questionable (counted as correct)



A: twelve

Transformers-XL: 63

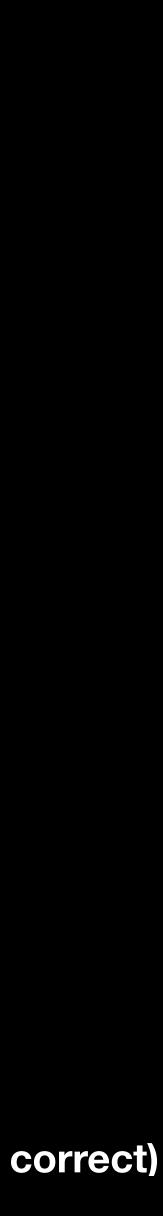
XL-NET: 63

GPT-2:9

• Q: A jury selection process draws 50 potential jurors. 38 potential jurors are released, resulting in a jury of _____

Correct

Questionable (counted as correct)



join. The number of frogs on the log is now _____ A: seven

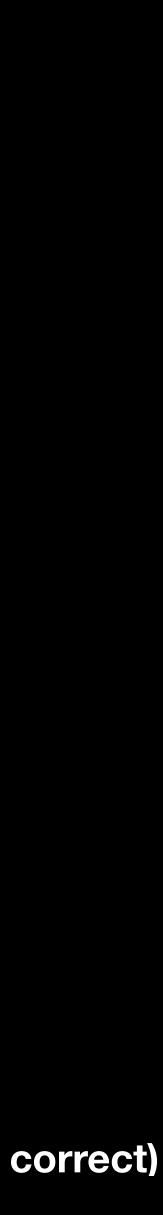
GPT: seventeen

XL-NET: nine

• Q: There are six frogs on a log. Two leave, but three

Correct

Questionable (counted as correct)



slices left are A: six

GPT: seven

Transformers-XL: total of six

XL-NET: different

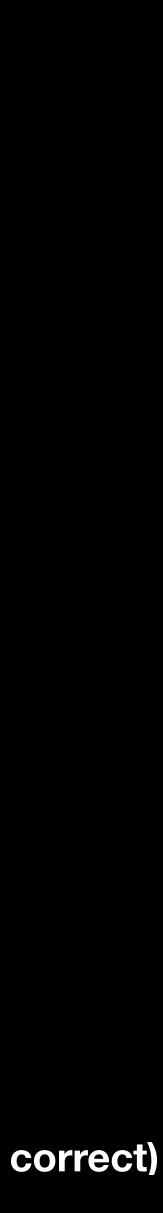
GPT-2: 30

BERT: six

 Q: I cut a pizza into twelve slices. Fred took two slices, and I took twice as many slices as Fred. The number of pizza

Correct

Questionable (counted as correct)



• Q: Two minutes remained until the end of the test. 60 the test? A: one minute

GPT: five minutes

Transformers-XL: 75 seconds

XL-NET: Kana Oka based the testing above on a standardized

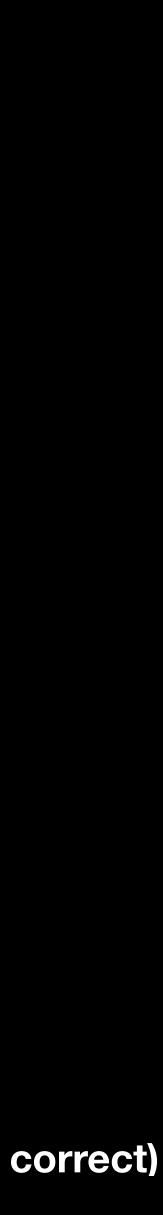
GPT-2: Your guess is as good as mine

BERT: two

seconds passed, leaving how many minutes until the end of

Correct

Questionable (counted as correct)



A few observations about the models

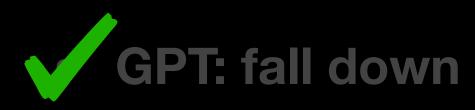
- context

• Large-scale language models do a good job of figuring the topic under conversation, and what the plausible set of masked words/continuations might be given the input

But a poor job of reasoning about which specific response is the right one

This comes through looking at distribution of **BERT's Answers**

Q: If you drop a feather on the moon, it will _____ A: drop straight down to the surface



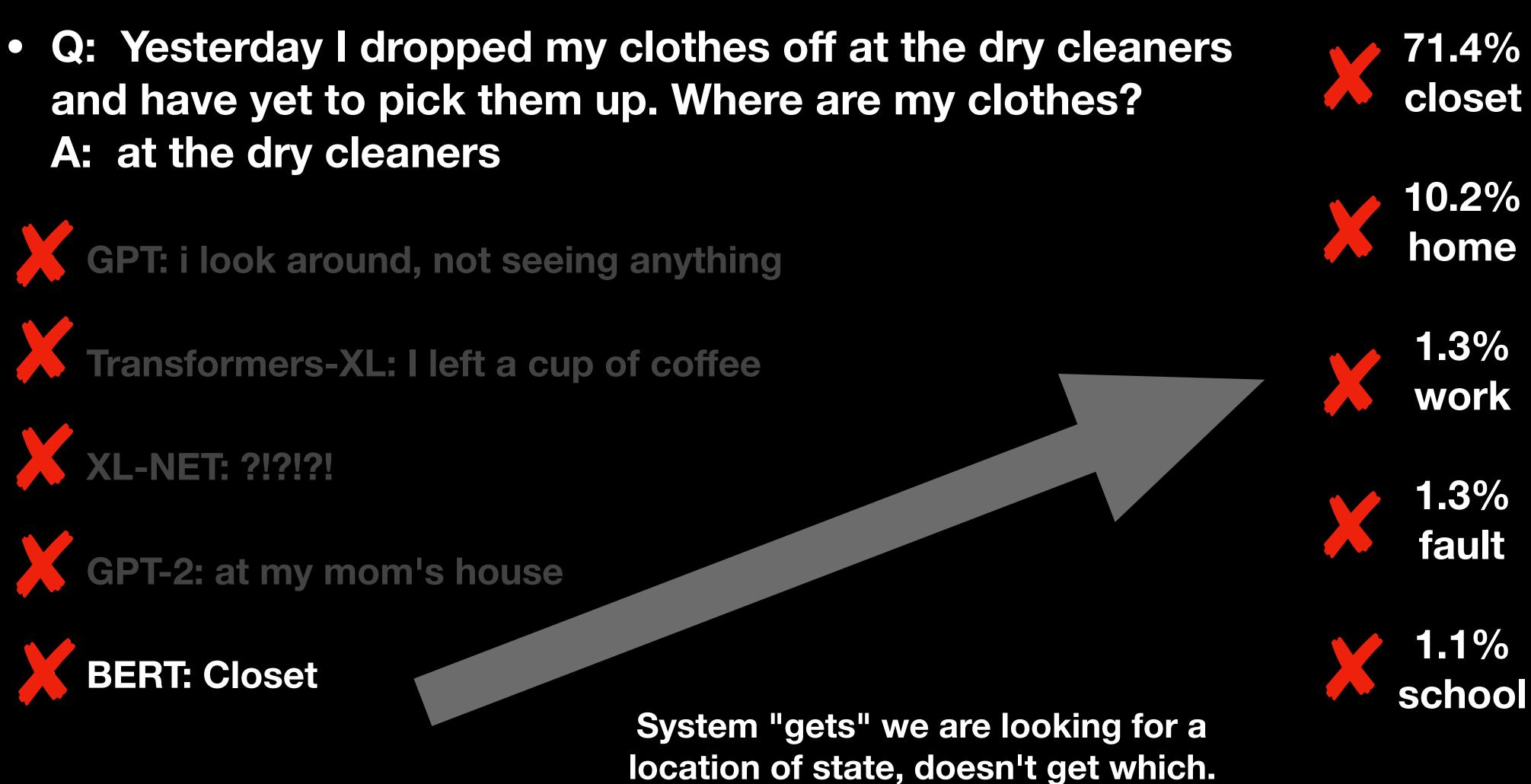
Transformers-XL: actually yield a crown like a baby rhinoceroe

XL-NET: appear as a star or a cloud on the night

GPT-2: fall back

of state, doesn't get the specific state.

A: at the dry cleaners



BERT - Insufficient sensitivity to fine-grained semantics

- Eating rocks is [MASK].
- 19.5% forbidden
- 16.0% prohibited
- 6.3% illegal
- 3.6% dangerous
- 3.1% common

- Eating **apples** is [MASK].
- 21.0% forbidden
- 11.7% prohibited
- 4.6% illegal
- 2.9% popular
- 2.7% common

BERT -- Insufficient sensitivity to negation

Is it a **good** idea to pour coffee beans into your cereal? [MASK].

- 58.3% No
- 7.3% Yes
- 2.0% Good
- 2.0% Yeah
- 1.2% Maybe

Is it a bad idea to pour coffee beans into your cereal? [MASK].

- 61.6% No
- 6.0% Yes
- 1.9% Yeah
- 1.6% Good
- 1.2% Maybe

BERT -- unexpectedly large influence of punctuation

The force that keeps people on the surface of the Earth is [MASK]

- 61.1%
- 20.4% -
- 13.3%
- ? 3.5%

0.5%

The force that keeps people on the surface of the Earth is [MASK]

- 3.9% immense
- 3.5% enormous
- 2.6% powerful

1.7% chaos

- Could these encodings feed a more robust reasoning system?
- more explicitly represented) in order to feed reasoning?

Open question

Or does one need a different way of deriving underlying cognitive models (perhaps

Should we give credit to Top5?

	Masked Words		• BE
Model	BERT Top 1	BERT Top 5	• Bı
T1-Conventional Knowledge	35.5%	64.5%	•
T2-Definitions	26.5%	52.9%	
T3- Transformations	45.5%	87.9%	e
T4-Atypical Consequences	46.4%	75.0%	• (
T5-Entity Tracking	36.7%	70.0%	ľ
T6-Quantity Tracking	16.7%	36.7%	• Ev
Average Accuracy	34.5%	64.5%	on ex

- ERT does a lot better if you give credit to the p 5 answers.
- ut should we?
- Imagine a calculator that gives you a distribution for 2+2 in which the correct answer is in the distribution but not the maximum,

e.g. [1 = .12, 2 = .28, 3 = .15, 4 = .25, 5 = .2]

- Credit for top 5 make sense for a human-inloop apps like Image Search; in reasoning and math perhaps less so.
- ven if we are more charitable, BERT would still hly be at 64.5%, so plenty of headroom left to plore

Next steps

Improvements, Future Directions and Expanding Scope

- Define meaningful metrics and scoring functions
 - Word level: syntax, synonyms and semantics
 - Sentence level: understanding context, coreferences and flow
 - Dialog/multiple sentences: carrying over the state and building a larger context
- More tasks: comparison, state changes, causal relationships, spatial and temporal relations reasoning
- More variations of the 6 core tasks, not all announced, but in same spirit, in order to minimize teaching to the test.
 - Briefly described scenarios, readily understood by ordinary people, demanding some understanding of how events unfold over time
- VQA version: watch clip, or a set of ordered images, and make guesses about what happens next
 - Example: see window, see hammer strike window, guess consequence
- Situated agents version (with Silvio Savarese lab)
 - See robot in simulated environment, be told what robot will do, anticipate consequence.

Deep understanding is hard

- We shouldn't confuse progress on superficial understanding for real progress on deep understanding.
 - ELIZA showed superficial understanding in 1965; it's underlying techniques did not prove useful for deep understanding. Ditto for many other chatbots.
- Expecting deep understanding to emerge from larger data sets without serious architectural innovation may not be realistic
- We may need to a lay a lot of groundwork first
 - Richer knowledge bases
 - Richer representational formats (eg tree structures, which are still marginal in deep learning community)
 - Operations over variables to manipulate tree structures (Smolensky's talk may give some insights)

Pilot Benchmark

- One important facet of deep understanding is dynamic understanding building models of unfolding events
- We have introduced (but not completed!) a pilot
- Preliminary results show that it is viable to create items that are easy for humans but challenging for current large-scale language models
- Our hope is that a more formalized version of the task can help move the field forward
- We would love help; email is Gary at the name of the company we are at

Robust A

Creating a New Foundation for the Future of Robotics

- Building a cognitive engine to enable common sense reasoning in robots
- Moving from automation to autonomy -- opening up a wide variety of applications where today's robots typically struggle
- Enabling new behaviours that rely on spatial and social awareness, adapting to dynamic commands and environments
- Developing hybrid systems, borrowing the strengths from deep learning, logic, symbolic AI, ...

Manuela Veloso

Advisor

Michelle Ho

Senior Interaction Designer

Carolyne Newman

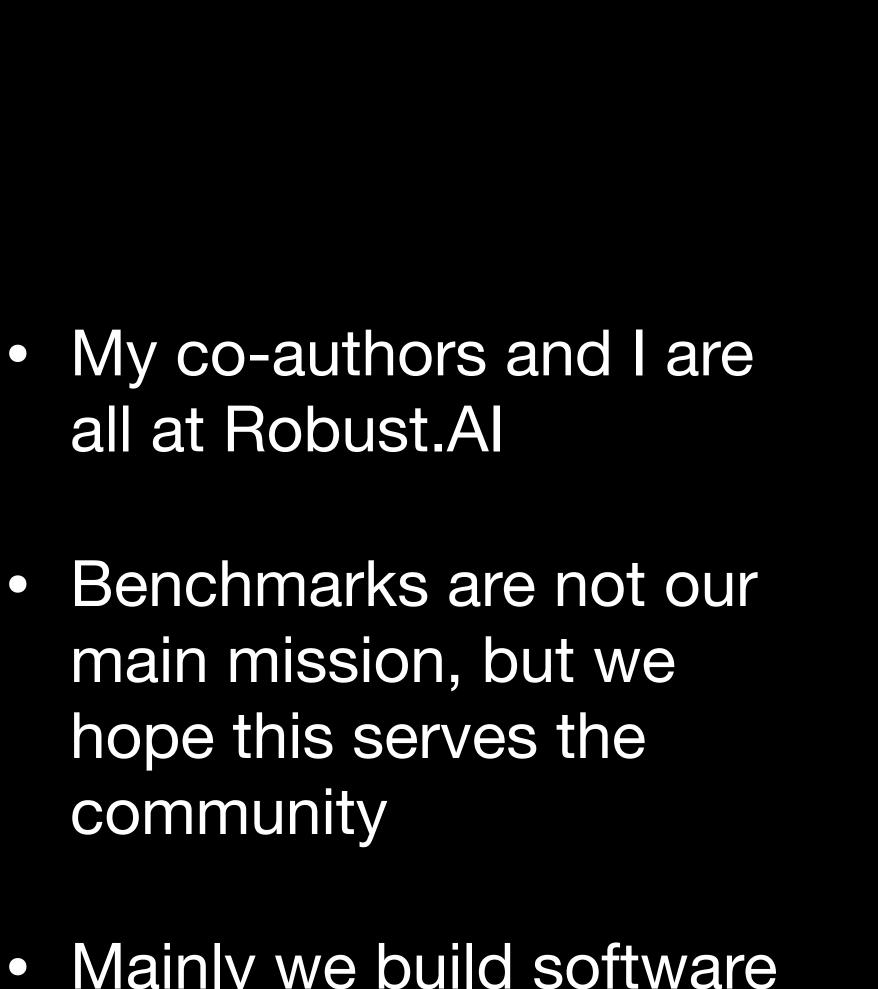
Missy Cummings Advisor

Steven Pinke Advisor

Mohamed R. Ame

Michael Witbrock

- all at Robust.Al
 - Benchmarks are not our main mission, but we hope this serves the community
 - Mainly we build software for robots



nene

- Building a cognitive reasoning in robots
- Moving from autom variety of applicatic struggle
- Enabling new beha awareness, adaptin environments
- Developing hybrid deep learning, logi

Esther Advisor

de m

Souther the sthe CS 0000

....

and l are

re not our but we

d software

