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Abstract

In cognitive systems, the role of a working memory is crucial for visual reasoning1

and decision making. Tremendous progress has been made in understanding the2

mechanisms of the human/animal working memory, as well as in formulating3

different frameworks of artificial neural networks. In the case of humans, the4

visual working memory (VWM) task [1] is a standard one in which the subjects are5

presented with a sequence of images, each of which needs to be identified as to6

whether it was already seen or not. Our work is a study of multiple ways to learn a7

working memory model using recurrent neural networks that learn to remember8

input images across timesteps in supervised and reinforcement learning settings.9

The reinforcement learning setting is inspired by the popular view in Neuroscience10

that the working memory in the prefrontal cortex is modulated by a dopaminergic11

mechanism. We consider the VWM task as an environment that rewards the12

agent when it remembers past information and penalizes it for forgetting. We13

quantitatively estimate the performance of these models on sequences of images14

from a standard image dataset (CIFAR-100 [2]) and their ability to remember15

and recall. Based on our analysis, we establish that a gated recurrent neural16

network model with long short-term memory units trained using reinforcement17

learning is powerful and more efficient in temporally consolidating the input spatial18

information. This work is an initial analysis as a part of our ultimate goal to model19

the behavior and information processing of the working memory of the brain and to20

use brain imaging data captured from human subjects during the VWM cognitive21

task to understand various memory mechanisms of the brain.22

1 Introduction23

Memory is an essential component for solving many tasks intelligently. Most sequential tasks24

involve the need for a mechanism to maintain a context. In the brain, working memory serves as25

a work space to encode and maintain the most relevant information over a short period of time, in26

order to use it to guide behavior for cognitive tasks. Several cognitive tasks have been proposed27

in the Neuropsychology literature to study and understand the working memory in animals. The28

Visual Working Memory Task (VWM task) [1] or the classic N-back task is one of the most simple29

and popular ones. It involves showing sequences of images to subjects and record their responses30

indicating whether they have seen the image already.31

On the other hand, with artificial intelligence systems, there has been very good progress in models32

that learn from sequences of inputs using artificial neural networks as memory for all types of learning33



(supervised, unsupervised and reinforcement). We intend to use these developments as an ideal34

opportunity for synergy to computationally model the working memory system of the brain.35

As memory is an important aspect of both artificial intelligence and neuroscience, there are some36

good studies that helped choose our models as discussed in Section 2.37

2 Models38

(a) Cognitive computational models of a cortical circuit
(left) and working memory (right) (from [3])

(b) The brainstem dopaminergic nuclei [substan-
tia nigra (SN) and ventral tegmental area (VTA)]
interacting with memory (from [6])

Figure 1: Inspirations for our models and training settings

Some ideas that motivated our choice of models :39

Gated recurrent-units as cortical circuits [3] highlights that Long short-term memories (LSTMs40

[4]), the most commonly used gated recurrent units with memory cells controlled by input, output41

and forget gates and these can be considered (at a high-level) as an abstraction of a cortical circuit42

unit composed of layers of pyramidal cells with gating as shown in Figure 1a.43

Dopaminergic modulation of working memory As detailed in [5] and [6] and shown in Figure 1b,44

the stimulus receive a reward from the dopaminergic nuclei based on which it is stored in the prefrontal45

cortex (PFC) as persistent activations. Thus, biologically there is a reward-processing mechanism46

(temporal difference, TD) that is operating outside the cortical memory.47

Deep Recurrent Reinforcement Learning As an extension of Deep Q-Networks (DQN)[7] with48

recurrent units were proposed as DRQNs by [8] for partially observable environments. This model49

naturally suits the non-Markov decision process involved in learning. ([9; 10; 11])50

The models are are categorized under two different settings :51

Supervised Learning models We consider 2 different models for training recurrent networks to52

output the probability of past occurrence of each image in the sequence using supervised learning:53

LSTM and LSTM-Attention (LSTM-A). The attention augmented version ([12]) helps learn the54

context better. These are used in conjunction with a CNN and trained using backpropagation through-55

time (without truncation), as shown in Figure 2a.56

Reinforcement Learning models We consider an environment where each image in the sequence57

is a state that the DRQN uses as input to approximate the Q-values of the two different action : 058

for not seen and 1 for seen. An ε-greedy policy is learned using these Q-values to select the action59

and receive a reward from the environment (positive value for correct action and negative value for60

wrong action) as shown in Figure 2b. These are trained using common TD control algorithms such as61

Q-learning and SARSA, indicated as Q+DQRN and SARSA+DQRN respectively.62
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(a) Network architecture for supervised learning

(b) DRQN in an environment for RL

Figure 2: Model architectures

3 Experiments and Results63

For all experiments in both supervised and reinforcement learning settings, 100 images were drawn64

from CIFAR-100 ([2]) dataset for each sequence. A CNN that was pre-trained on the same dataset65

for the classification task was used for intermediate representation before LSTM layers (as shown in66

Figure 2).67

(a) Final test performance of DRQN models after every
500 training episodes (sequences)

(b) Final test performance of the 4 trained models
for repeat counts N = 1 (left) and N = 2 (right)

Figure 3: Final performance of the models (the lines indicate std. dev.)

The problem solved by all the models is a binary classification problem, predicting unseen(0)/seen(1).68

The performance of all the models in the experiments were measured using the accuracy metric69

calculated based on the number of correct predictions for the 100 images in a sequence (as a %). This70

evaluation was repeated for 10 independent trials as a part of ablation studies.71

Figure 3a shows the test accuracy of both the reinforcement learning models after fixed training72

episodes to track the progress. Figure 3b depicts the performance of the different models using mean73

final accuracy scores for two different conditions of repetitions of the stimuli images: N = 1 and74

N = 2. Figure 4 indicates the variation of test accuracy of each of the trained models over the course75

of a testing sequence. It can be seen that the models trained in the reinforcement learning setting76

outperform both the LSTM and LSTM-A in the supervised setting. Both on-policy and off-policy77

methods help in solving the task and learning good parametric functions in the LSTMs.78
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Figure 4: Performance of the trained models measured during test runs within a sequence

4 Conclusions and Future work79

Popular literature in deep reinforcement learning ([8], [11]) outline many architectures and methods80

to solve specific (mostly motor) decision making tasks in an environment. In our work, we have taken81

an alternative view where we try to solve a strongly memory-oriented task using similar models used82

in reinforcement learning to emulate the reward processing happening to store memory.83

A good working memory model understands what to remember and what to forget. From our84

study, we conclude that modelling a working memory using gated recurrent neural networks (such85

as LSTMs) to train using a reward-based learning approach offers significant advantages giving a86

reasonably superior performance. From the models studied,it can be seen that in addition to the87

capacity of the recurrent network, a training in the reinforcement learning setting offers a better88

generalization with its power for acting as a good computational model for the biological working89

memory for explaining the VWM task. This seems to indicate that the dopaminergic control of90

memory in the PFC is a high-level principle that is common to both artificial and biological neural91

systems. Also, this observation could be attributed to the fact that deep reinforcement learning is a92

better framework for learning in this case, given the non-stationary and non-Markov nature of the93

task involved.94

As a next step, we plan to model other cognitive tasks for memory as a reinforcement learning95

problem and compare the performance of different algorithms and gating mechanisms in the networks.96

Further, we would like to extend our work by using the brain responses of humans solving the task97

from their fMRI data and identify the neural correlates of the visuo-temporal streams of information.98

This would throw more light on the functional similarities of the biological and artificial neural99

models explaining how the memory system functions computationally.100
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