
Enhancing the Transformer with Explicit
Relational Encoding for Math Problem Solving

Imanol Schlag∗
The Swiss AI Lab IDSIA / USI / SUPSI

imanol@idsia.ch

Paul Smolensky
Microsoft Research, Redmond

Johns Hopkins University
psmo@microsoft.com

Roland Fernandez
Microsoft Research, Redmond
rfernand@microsoft.com

Nebojsa Jojic
Microsoft Research, Redmond

jojic@microsoft.com

Jürgen Schmidhuber
The Swiss AI Lab IDSIA / USI / SUPSI

juergen@idsia.ch

Jianfeng Gao
Microsoft Research, Redmond

jfgao@microsoft.com

Abstract

We incorporate Tensor-Product Representations within the Transformer in order to
better support the explicit representation of relation structure. Our Tensor-Product
Transformer (TP-Transformer) sets a new state of the art on the recently-introduced
Mathematics Dataset containing 56 categories of free-form math word-problems.
The essential component of the model is a novel attention mechanism, called TP-
Attention, which explicitly encodes the relations between each Transformer cell and
the other cells from which values have been retrieved by attention. TP-Attention
goes beyond linear combination of retrieved values, strengthening representation-
building and resolving ambiguities introduced by multiple layers of standard atten-
tion. An initial analysis indicates that the role representations learn task-relevant
relational structure.

1 Introduction

In this paper we propose a variation of the Transformer that is designed to allow it to better incorporate
structure into its representations. We test the proposal on a task where structured representations
are expected to be particularly helpful: math word-problem solving. For this task, the model takes a
free-form math question like Let r(g) be the second derivative of 2*g**3/3 – 21*g**2/2 + 10*g. Let
z be r(7). Factor –z*s + 6 – 9*s**2 + 0*s + 6*s**2. and must produce the answer –(s + 3)*(3*s – 2).
Our proposed model successfully predicts such answers.

We begin by viewing the Transformer (Vaswani et al., 2017) as a kind of Graph Neural Network. For
concreteness, consider the encoder component of a Transformer with H heads. When the hth head of
a cell t of layer l issues a query and as a result concentrates its self-attention distribution on another
cell t′ in layer l, we can view these two cells as joined by an edge in an information-flow graph: the
value vector at t′ in effect passes via this edge to affect the activation state of t. The strength of this
attention can be viewed as a weight on this edge, and the index h of the head can be viewed as a label
on this edge. Thus, each layer of the Transformer can be viewed as a complete, directed, weighted,

∗Work done while at Microsoft Research.

Workshop on Context and Compositionality in Biological and Artificial Neural Systems (NeurIPS 2019)

labeled graph. Prior NLP work has interpreted certain edges of these graphs in terms of linguistic
relations (Sec. 5), and we wish to enrich the relation structure of these graphs to better support the
explicit representation of relations within the Transformer.

Here we propose to replace each of the discrete edge labels 1, . . . ,H , with a relation vector: we
create a bona fide representational space for the relations being learned by the Transformer. This
makes it possible for the hidden representation at each cell to approximate the vector embedding
of a symbolic structure built from the relations generated by that cell. This embedding is a Tensor-
Product Representation (TPR). TPRs provide a general method for embedding symbol structures
in vector spaces. TPRs support compositional processing by directly encoding constituent structure:
the representation of a structure is the sum of the representation of its constituents. The representation
of each constituent is built from two vectors: one vector that embeds the content of the constituent, the
‘filler’ — here, the vector resulting from attention — and a second vector that embeds the structural
role it fills — here, a relation conceptually labeling an edge of the attention graph. The vector that
embeds a filler and the vector that embeds the role it fills are bound together by the tensor product to
form the tensor that embeds the constituent that they define.2 The relations here, and the structures
they define, are learned unsupervised by the Transformer in service of a task: post-hoc analysis is
then required to interpret those roles.

In the new model, the TP-Transformer, each head of each cell generates a key-, value- and query-
vector, as in the Transformer, but additionally generates a relation-vector. The query is interpreted
as seeking the appropriate filler for that role. Each head binds that filler to its role via the tensor
product (or some contraction of it), and these filler/role bindings are summed to form the TPR of a
structure with H constituents (details in Sec. 2.).

On the Mathematics Dataset (Sec. A), the new model sets a new state of the art for the overall accuracy,
and for all the individual-problem-type module accuracies (Sec. 3). Initial results of interpreting the
learned roles for the arithmetic-problem module show that they include a good approximation to
the second-argument role of the division operator and that they distinguish between numbers in the
numerator and denominator roles (Sec. 4).

2 The TP-Transformer

The TP-Transformer’s encoder network, like the Transformer’s encoder (Vaswani et al., 2017), can
be described as a 2-dimensional lattice of cells (t, l) where t = 1, ..., T are the sequence elements of
the input and l = 1, ..., L are the layer indices with l = 0 as the embedding layer. All cells share the
same topology and the cells of the same layer share the same weights. More specifically, each cell
consists of an initial layer normalization (LN) followed by a TP-Multi-Head Attention (TPMHA)
sub-layer followed by a fully-connected feed-forward (FF) sub-layer. Each sub-layer is followed by
layer normalization (LN) and by a residual connection (as in the original Transformer; Eq. 1). Our
cell structure follows directly from the official TensorFlow source code by Vaswani et al. (2017) but
with regular Multi-Head Attention replaced by our TPMHA layer.

The input into cellt,l is the output of cellt,l−1 and doesn’t depend on the state of any other cells of the
same layer, which allows a layer’s outputs to be computed in parallel.

ht,l = zt,l + TPMHA(LN(zt,l),LN(z1:T,l))

zt,l+1 = LN(ht,l + FF(LN(ht,l)))
(1)

We represent the symbols of the input string as one-hot vectors x1, ...,xT ∈ Rdv where dv is the size
of the vocabulary and the respective columns of the matrix E ∈ Rdz×dv are the embedding vectors
of those symbols. We also include a positional representation pt using the same sinusoidal encoding
schema introduced by Vaswani et al. (2017). The input of the first-layer cellt,1 is zt,0:

et = Ext

√
dz + pt

rt = W (p)et + b(p)

zt,0 = et � rt

(2)

2 The tensor product operation is what enables the sum of constituents representing the structure as a whole
to be uniquely decomposable back into individual pairs of roles and their fillers, if necessary.

2

where W (p) ∈ Rdz×dz , b(p) ∈ Rdz , rt is a position- and symbol-dependent role representation, and
� is elementwise multiplication (a contraction of the tensor product: see Sec. ??).

2.1 TP-Multi-Head Attention

The TPMHA layer of the encoder consists of H heads that can be applied in parallel. Every head
h, 1 ≤ h ≤ H applies separate affine transformations W h,(k)

l ,W
h,(v)
l ,W

h,(q)
l ,W

h,(r)
l ∈ Rdk×dz ,

b
h,(k)
l , b

h,(v)
l , b

h,(q)
l , b

h,(r)
l ∈ Rdk to produce key, value, query, and relation vectors from the hidden

state zt,l, where dk = dz/H:

kh
t,l = W

h,(k)
l zt,l + b

h,(k)
l

vh
t,l = W

h,(v)
l zt,l + b

h,(v)
l

qh
t,l = W

h,(q)
l zt,l + b

h,(q)
l

rht,l = W
h,(r)
l zt,l + b

h,(r)
l

(3)

The filler of the attention head t, l, h is

v̄h
t,l =

T∑
i=1

vh
i,lα

h,i
t,l , (4)

i.e., a weighted sum of all T values of the same layer and attention head (see Fig. 1). Here
αh,i
t,l ∈ (0, 1) is a continuous degree of match given by the softmax of the dot product between the

query vector at position t and the key vector at position i:

αh,i
t,l =

exp(qh
t,l · kh

i,l
1√
dk

)∑T
i′=1 exp(qh

t,l · kh
i′,l

1√
dk

)
(5)

The scale factor 1√
dk

can be motivated as a variance-reducing factor under the assumption that the
elements of qh

t,l and kh
t,l are uncorrelated variables with mean 0 and variance 1, in order to initially

keep the values of the softmax in a region with better gradients.

Finally, we bind the filler v̄h
t,l with our relation vector rht,l, followed by an affine transformation

W
(o)
h,l ∈ Rdz×dk , b

(o)
h,l ∈ Rdz before it is summed up with the other heads’ bindings to form the TPR

of a structure with H constituents: this is the output of the TPMHA layer.

TPMHA(zt,l, z1:T,l) =
∑
h

[
W

(o)
h,l (v̄h

t,l � rht,l) + b
(o)
h,l

]
(6)

Note that, in this binding, to control dimensionality, we use a contraction of the tensor product,
pointwise multiplication �: this is the diagonal of the tensor product. For discussion, see the
Appendix.

Figure 1: A simplified illustration of our TP-Attention mechanism for one head at position t in layer l.
The main difference from standard Attention is the additional role representation that is element-wise
multiplied with the filler/value representation.

3

3 Experimental results

We evaluate our trained model on the concatenated interpolation and extrapolation datasets of the
pre-generated files, achieving a new state of the art: see Table 1. For a more detailed comparison, we
include in the appendix the interpolation and extrapolation performance of every module separately.
Our model never quite converged, and was stopped prematurely after 1.7 million steps. We trained
our model on one server with 4 V100 Nvidia GPUs for 25 days. Additional experimental details can
be found in the Appendix.

Table 1: Model accuracy averaged over all modules. A sample is correct if all elements of the
target sequence have been predicted correctly. >95% counts how many of the modules are over 95%
accuracy.

weights steps train interpolation extrapolation
acc >95% acc >95%

Simple LSTM 18M 500k - 57.00% 6 41.00% 1
Transformer (Saxton et al.) 30M 500k - 76.00% 13 50.00% 1

Transformer (ours) 44.2M 500k
700k

83.06%
85.01%

75.33%
77.42%

12
14

52.42%
52.00%

1
2

TP-Transformer (ours) 49.2M
500k
700k
1.7M

85.41%
87.25%
91.04%

78.30%
80.67%
84.24%

16
18
25

52.22%
52.48%
55.40%

2
3
3

4 Interpreting the learned roles

We report initial results of analyzing the learned structure of the encoder network’s last layer from
our 700k-step TP-Transformer. To this end, we sample 128 problems from the interpolation dataset
of the arithmetic__mixed module and collect the role vectors from a randomly chosen head. We use
k-means with k = 20 to cluster the role vectors from different samples and different time steps of
the final layer of the encoder. Interestingly, we find separate clusters for digits in the numerator and
denominator of fractions. When there is a fraction of fractions we can observe that these assignments
are placed such that the second fraction reverses, arguably simplifying the division of fractions into a
multiplication of fractions (see Fig. 2).

Figure 2: Samples of correctly processed problems from the arithmetic__mixed module. ‘#’ and
‘%’ are the start- and end-of-sentence symbols. The colored squares indicate the k-means cluster
of the role-vector assigned by one head in the final layer in that position. Blue and gold rectangles
respectively highlight numerator and denominator roles. They were discovered manually. Note how
their placement is correctly swapped in rows 2, 3, and 4, where a number in the denominator of a
denominator is treated as if in a numerator. Role-cluster 9 corresponds to the role ones-digit-of-a-
numerator-factor, and 6 to ones-digit-of-a-denominator-factor; other such roles are also evident.

4

5 Related work

Several recent studies have shown that the Transformer-based model BERT (Devlin et al., 2018)
captures linguistic relations such as those expressed in dependency-parse trees. This was shown
for BERT’s hidden activation states in (Hewitt & Manning, 2019; Tenney et al., 2019) and, most
directly related to the present work, for the graph implicit in BERT’s attention weights (Coenen et al.,
2019; Lin et al., 2019). Future work applying the TP-Transformer to language tasks (like those on
which BERT is trained) will enable us to study the connection between the explicit relations {rht,l}
the TP-Transformer learns and the implicit relations that have been extracted from BERT.

6 Conclusion

We have introduced the TP-Transformer, which enables the powerful Transformer architecture to
learn to explicitly encode structural relations using Tensor-Product Representations. On the novel
and challenging Mathematics Dataset, TP-Transformer beats the previously published state of the
art by 8.24%. Our initial analysis of this model’s final layer suggests that the TP-Transformer
naturally learns to cluster symbol representations based on their structural position and relation to
other symbols.

References
Andy Coenen, Emily Reif, Ann Yuan, Been Kim, Adam Pearce, Fernanda Viégas, and Martin

Wattenberg. Visualizing and measuring the geometry of BERT. arXiv preprint arXiv:1906.02715,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4129–4138, 2019.

Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside BERT’s linguistic
knowledge. arXiv preprint arXiv:1906.01698, 2019.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=H1gR5iR5FX.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

5

https://openreview.net/forum?id=H1gR5iR5FX

A The Mathematics Dataset

The Mathematics Dataset (Saxton et al., 2019) is a large collection of math problems of various types,
including algebra, arithmetic, calculus, numerical comparison, measurement, numerical factorization,
and probability. Its main goal is to investigate the capability of neural networks to reason formally.
Each problem is structured as a character-level sequence-to-sequence problem. The input sequence
is a free-form math question or command like What is the first derivative of 13*a**2
- 627434*a + 11914106? from which our model correctly predicts the target sequence 26*a
- 627434. Another example from a different module is Calculate 66.6*12.14. which has
808.524 as its target sequence.

The dataset is structured into 56 modules which cover a broad spectrum of mathematics up to
university level. It is procedurally generated and comes with 2 million pre-generated training
samples per module. The authors provide an interpolation dataset for every module, as well as a few
extrapolation datasets as an additional measure of algebraic generalization.

We merge the different training splits train-easy, train-medium, and train-hard from all modules into
one big training dataset of 120 million unique samples. From this dataset we extract a character-level
vocabulary of 72 symbols, including start-of-sentence, end-of-sentence, and padding symbols3.

B Implementation Details

We initialize the symbol embedding matrix E from N (0, 1), W (p) from N (1, 1), and all other
matrices W (·) using the Xavier uniform initialization as introduced by Glorot & Bengio (2010). The
model parameters are set to dz = 512, df = 2048, dv = 72, H = 8, L = 6. We were not able to
train the TP-Transformer, nor the regular Transformer, using the learning rate and gradient clipping
scheme described by Saxton et al. (2019). Instead we proceed as follows: The gradients are computed
using PyTorch’s Autograd engine and their gradient norm is clipped at 0.1. The optimizer we use is
also Adam, but with a smaller learning_rate = 1× 10−4, beta1 = 0.9, beta2 = 0.995. We train with
a batch size of 1024 up to 1.7 million steps.

C Feed-forward Layer

The feed-forward layer of a cell consists of an affine transformation followed by a ReLU activation
and a second affine transformation:

FF(x) = W
(g)
l ReLU(W

(f)
l x + b

(f)
l) + b

(g)
l (7)

Here, W (f)
l ∈ Rdf×dz , b

(f)
l ∈ Rdf ,W

(g)
l ∈ Rdz×df , b

(g)
l ∈ Rdz and x is the function’s argument.

As in previous work, we set df = 4dz .

D The Decoder Network

The decoder network is a separate network with a similar structure to the encoder that takes the
hidden states of the encoder and auto-regressively generates the output sequence. In contrast to the
encoder network, the cells of the decoder contain two TPMHA layers and one feed-forward layer.
We designed our decoder network analogously to Vaswani et al. (2017) where the first attention layer
attends over the masked decoder states while the second attention layer attends over the final encoder
states. During training, the decoder network receives the shifted targets (teacher-forcing) while during
inference we use the previous symbol with highest probability (greedy-decoding). The final symbol
probability distribution is given by

ŷt̂ = softmax(ET ẑt̂,L) (8)

where ẑt̂,L is the hidden state of the last layer of the decoder at decoding step t̂ of the output sequence
and E is the shared symbol embedding of the encoder and decoder.

3Note that Saxton et al. (2019) report a vocabulary size of 95, but this figure encompasses characters that
never appear in the pre-generated training and test data.

6

E Accuracy per-module

Figure 3: The accuracies of our implementation of the Transformer (700k steps) and the TP-
Transformer (700k and 1.7M steps) for every module of the Mathematics Dataset.

7

	Introduction
	The TP-Transformer
	TP-Multi-Head Attention

	Experimental results
	Interpreting the learned roles
	Related work
	Conclusion
	The Mathematics Dataset
	Implementation Details
	Feed-forward Layer
	The Decoder Network
	Accuracy per-module

