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Compositionality and NNs: Where to start?
• Human cognition: what notion of compositionality does it instantiate?
• NNs: what very general notion of compositionality naturally applies to them?
• Historical source of prominence of compositionality notion: Strong definition D

➤ No one would deny that satifying D constitutes compositionality
➤ Idealization, rather than empirically-validated characterization, of human cognition
➤ May be too strong to apply to all desired cases
➤ BUT: if NNs can meet this strong definition, we can dismiss in-principle arguments 

claiming the impossibility of NNs displaying compositionality
➤ AND: (i) Identify the primitive NN competences which enable strong 

compositionality 
(ii) Endow deep learning with these primitives

Strategy today
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Fodor & Pylyshyn 1988. Connectionism and cognitive architecture: 
A critical analysis Cognition 28: 3–71
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Smolensky 1987 The constituent structure of  connectionist mental states: A reply to Fodor and 
Pylyshyn Southern Journal of  Philosophy, 26: 137–161

Fodor & Pylyshyn 1988. Connectionism and cognitive architecture: A critical analysis 
Cognition 28: 3–71

Smolensky 1988 On the proper treatment of  connectionism Behavioral and Brain Sciences 11: 1–23. 
Also: 11: 59–74; 13: 407–411

Fodor & McLaughlin 1990 Connectionism and the problem of  systematicity: Why Smolensky’s 
solution doesn't work Cognition 35: 183–204

Smolensky 1991 Connectionism, constituency, and the language of  thought. In  Loewer & Rey 
(Eds.) Meaning in Mind: Fodor and his Critics 201–227 

Smolensky 1995 Constituent structure and explanation in an integrated connectionist/symbolic 
cognitive architecture. In Macdonald & Macdonald (Eds.) Connectionism: Debates on Psychological 
Explanation Vol 2 221–290 

Fodor 1997 Connectionism and the problem of  systematicity (continued): Why Smolensky's 
solution still doesn’t work Cognition 62: 109–119

Smolensky 2006 Computational levels and integrated connectionist/symbolic explanation. In 
Smolensky & Legendre The Harmonic Mind Vol 2 503–592

Compositionality and NNs: Where to start?
• Historical source of prominence of compositionality notion: Strong definition D

➤ BUT: if NNs can meet this strong definition, we can dismiss in-principle arguments 
claiming the impossibility of NNs displaying compositionalitySmolensky 1987 The constituent structure of  connectionist mental states: A reply to Fodor and 
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Strategy today
Compositionality and NNs: Where to start?

• Historical source of prominence of compositionality notion: Strong definition D
➤ BUT: if NNs can meet this strong definition, we can dismiss in-principle arguments 

claiming the impossibility of NNs displaying compositionality
• An infinite universe U of discrete structures: labeled binary trees

• A recursive formal rewrite-rule grammar G that generates an infinite subset L of U

• A system M has compositional behavior if it computes f: L → X where 
      f  is recursively defined w.r.t. grammar rules in G: X → A B; A → a; B → b:
            f([X a b]) = fX ( fA(a), fB(b)) 

• M has compositional processing: procedure for computing f is built from subprocesses 
computing fX ‘s 

• M has compositional representation: F&P footnote 9, p. 14 “physical instantiation 
mapping of combinatorial structure” F(P&Q) = B& [F(P), F(Q)]

• M has compositional learning: ?? Need an induction principle: data → G , e.g., MDL
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What we know for certain
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Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING

From work of the previous millenium
Next: work of this millenium on learning
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What we know for certain
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Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING

Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity, 
compositionality, inferential coherence”

These are stipulated, not explained
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What we know for certain
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Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity, 
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial) 
representations can

  Incorporate
          	 ●  Type/token distinction
          	 ●  Variables which can be bound to values

Smolensky 1988 Analysis of  distributed representation of  constituent structure in connectionist 
systems. NIPS-1987 730–739

Smolensky 1990 Tensor product variable binding and the representation of  symbolic structures in 
connectionist networks Artificial Intelligence 46: 159–216

Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING
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What we know for certain
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Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity, 
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial) 
representations can

  Incorporate
          	 ●  Type/token distinction
          	 ●  Variables which can be bound to values
          	 ●  Embedding of combinatorial constituents within others
          	 ●  Recursive structure (e.g., trees)

Legendre, Miyata & Smolensky 1991 Distributed recursive structure processing. NIPS-1990 591–597

Smolensky & Legendre 2006 The Harmonic Mind: From Neural Computation to Optimality-Theoretic 
Grammar. Vol. 1: Cognitive Architecture MIT Press.

Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING
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What we know for certain

10

Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity, 
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial) 
representations can

  Incorporate
          	 ●  Type/token distinction
          	 ●  Variables which can be bound to values
          	 ●  Embedding of combinatorial constituents within others
          	 ●  Recursive structure (e.g., trees)
          	 ●  Grammars controlling constituent combination
               ●  New grammar formalisms that have transformed 

parts of formal linguistic theory

Legendre, Miyata & Smolensky 1990. Harmonic Grammar — A formal multi-level connectionist 
theory of  linguistic well-formedness: Theoretical foundations. CogSci-1990 388–395

Smolensky 1993 Harmonic Grammars for formal languages. NIPS-1992 847–854.
Prince & Smolensky 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar  
Smolensky & Legendre 2006 The Harmonic Mind: From Neural Computation to Optimality-Theoretic 

Grammar. Vol. 2: Linguistic and Philosophical Implications MIT Press
Cho, Goldrick & Smolensky 2017 Incremental parsing in a continuous dynamical system: 

Sentence processing in Gradient Symbolic Computation Linguistics Vanguard 3:1

Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING
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What we know for certain
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Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity, 
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial) 
representations can

  Incorporate
                 ●  Type/token distinction
                 ●  Variables which can be bound to values
                 ●  Embedding of combinatorial constituents within others
                 ●  Recursive structure (e.g., trees)
                 ●  Grammars controlling constituent combination
                 ●  New grammar formalisms that have transformed 

parts of formal linguistic theory

  Compute
          	 ●  Structure sensitive functions
          	 ●  Recursive functions in formally specified families 

Smolensky 2012 Symbolic functions from neural computation Philosophical Transactions of  the Royal 
Society — A: Mathematical, Physical and Engineering Sciences 370: 3543–3569

Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING
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What we know for certain
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Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity, 
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial) 
representations can explain systematicity & productivity

  Incorporate
                 ●  Type/token distinction
                 ●  Variables which can be bound to values
                 ●  Embedding of combinatorial constituents within others
                 ●  Recursive structure (e.g., trees)
                 ●  Grammars controlling constituent combination
                 ●  New grammar formalisms that have transformed 

parts of formal linguistic theory

  Compute
          	 ●  Structure sensitive functions
          	 ●  Recursive functions in formally specified families
 

Smolensky 1995 Constituent structure and explanation in an integrated connectionist/symbolic 
cognitive architecture. In Macdonald & Macdonald (Eds.) Connectionism: Debates on Psychological 
Explanation Vol 2 221–290 

Capabilities of  KNOWLEDGE & PROCESSING, not LEARNING

All this is enabled 
by Tensor Product 

Representations 
(TPRs): primitives 

enabling strong 
compositionality
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What we know for certain
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Capabilities of  LEARNING

From work of the previous millenium
Now: work of this millenium on learning
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Standard DNNs learning highly structure-sensitive functions can create combinatorial 
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs 
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks 

What we know for certain

14

Capabilities of  LEARNING

  McCoy, Linzen, Dunbar, Smolensky 2019 RNNs Implicitly Implement Tensor Product 
Representations ICLR-2019 arXiv:1812.08718

† Chen, Huang, Palangi, Smolensky, Forbus, Gao 2019 Natural-to formal-language generation 
using Tensor Product Representations arXiv:1910.02339

Talk @KR2ML yesterday
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MathQA: Example answers — Kezhen Chen+

what	is	the	sum	of	the	mul$ples	of	4	between	38	and	127	inclusive	?
(add	n1	const_2)	(subtract	n2	const_3)	(add	#0	#1)	(subtract	#1	#0)	(divide	#3	n0)	
(divide	#2	const_2)	(add	#4	const_1)	(mul$ply	#6	#5)

this	year	,	mbb	consul$ng	fired	6	%	of	its	employees	and	leN	remaining	employee	salaries	
unchanged	.	sally	,	a	first	-	year	post	-	mba	consultant	,	no$ced	that	that	the	average	
(	arithme$c	mean	)	of	employee	salaries	at	mbb	was	10	%	more	aNer	the	employee	headcount	
reduc$on	than	before	.	the	total	salary	pool	allocated	to	employees	aNer	headcount	reduc$on	
is	what	percent	of	that	before	the	headcount	reduc$on	?
(mul$ply	n1	const_100)	(	subtract	const_100	n0)	(add	#0	const_100)	(add	#1	const_4)	
(mul$ply	#2	#3)	(divide	#4	#0)	

a	high	school	has	360	students	1	/	2	aRend	the	arithme$c	club	,	5	/	8	aRend	the	biology	club	
and					3	/	4	aRend	the	chemistry	club	.	3	/	8	aRend	all	3	clubs	.	if	every	student	aRends	at	least	
one	club	how	many	students	aRend	exactly	2	clubs	.
(mul$ply	n0	n1)	(mul$ply	n0	n3)	(mul$ply	n0	n5)	(divide	#0	n2)	(divide	#1	n4)	(divide	#2	n6)	
(divide	#2	n4)	(add	#3	#4)	(mul$ply	n2	#6)	(add	#7	#5)	(subtract	#9	#8)	(subtract	#10	n0)

† Chen, Huang, Palangi, Smolensky, Forbus, Gao 2019 Natural-to formal-language generation 
using Tensor Product Representations arXiv:1910.02339
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MATH	QA	ACCURACY:	EXACTLY	MATCHING	PROGRAM
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consider	a	number	,	your	task	is	to	find	the	given	number	factorial
(	<=	arg1	1	)	(−	arg1	1	)	(	self	#1	)	(	*	#2	arg1	)	(	if	#0	1	#3	)	(	lambda1	#4	)	(	invoke1	#5	a	)

consider	a	number	,	your	task	is	to	find	the	given	number	factorial

(	<=	arg1	1	)	(	−	arg1	1	)	(	self	#1	)	(	*	#2	arg1	)	(	if	#0	1	#3	)	(	lambda1	#4	)	(	invoke1	#5	a	)

you	are	given	numbers	a	,	b	and	d	and	an	array	of	numbers	c	,	let	how	many	$mes	you	can	
replace	a	with	sum	of	its	digits	before	it	becomes	a	single	digit	number	and	b	be	the	
coordinates	of	one	end	and	the	length	of	the	longest	subsequence	of	c	with	the	first	value	
of	the	subsequence	equal	to	one	and	all	values	except	for	the	first	equal	to	the	previous	
value	plus	one	and	d	be	the	coordinates	of	another	end	of	segment	e	,	what	is	the	length	of	
segment	e	rounded	down
(	digits	arg1	)	(	len	#0	)	(	==	#1	1	)	(	digits	arg1	)	(	reduce	#3	0	+	)	(	self	#4	)	(	+	1	#5	)	
(	if	#2	0	#6	)	(	lambda1	#7	)	(	invoke1	#8	a	)	(	==	arg1	arg2	)	(	+	arg1	1	)	(	if	#10	#11	arg1	)	
(	lambda2	#12	)	(	reduce	c	1	#13	)	(−	#14	1	)	(−	#9	#15	)	(	digits	arg1	)	(	len	#17	)	(	==	#18	1	)	
(	digits	arg1	)	(	reduce	#20	0	+	)	(	self	#21	)	(	+	1	#22	)	(	if	#19	0	#23	)	(	lambda1	#24	)	
(	invoke1	#25	a	)	(	==	arg1	arg2	)	(	+	arg1	1	)	(	if	#27	#28	arg1	)	(	lambda2	#29	)	
(	reduce	c	1	#30	)	(	−	#31	1	)	(−	#26	#32	)	(	*	#16	#33	)	(−	b	d	)	(−	b	d	)	(	*	#35	#36	)	
(	+	#34	#37	)	(	sqrt	#38	)	(	floor	#39	)

ALGOLISP:	EXAMPLE	ANSWERS
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ALGOLISP	ACCURACY:	ANSWER	/	PROGRAM

67.54	

83.8	

72.28	
75.31	

84.02	

75.12	

79.92	
83.05	

93.06	

50	

55	

60	

65	

70	

75	

80	

85	

90	

95	

100	

LSTM2LSTM	 Previous	SOTA	 Ours	(TP	encoder	only)	 Ours	(TP	decoder	only)	 Ours	(TP	encoder	&	decoder)	

MulCple	choice	answer	 Exact	matching	program	

Previous	SOTA	 Our	model:	TP-N2F	

N
ot
	re

po
rt
ed

;	c
od

e	
no

t	r
el
ea
se
d

Wednesday, December 18, 19



Standard DNNs learning highly structure-sensitive functions can create combinatorial 
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs 
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks 

What we know for certain

19

Capabilities of  LEARNING

* Schlag, Smolensky, Fernandez, Jojic, Schmidhuber, Gao 2019 Enhancing the Transformer with Explicit 
Relational Encoding for Math Problem -Solving arXiv:1910.06611†

Poster here today
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Mathematics Dataset (DeepMind) — Imanol Schlag+

Suppose	0	=	2*a	+	3*a	–	150.	Let	p	=	106	–	101.	Suppose	–3*b	+	w	+	544	=	
3*w,	–p*b	–	5*w	=	–910.	What	is	the	greatest	common	factor	of	b	and	a?																																																																																																		
30

Let	q(r)	=	33*r.	Let	a(y)	=	–y**2	+	2*y	–	2.	Let	p	be	a(1).	Let	d	be	q(p).	
Let	n	=	38	+	d.	Solve	–5*v	–	11	=	–3*c	–	0*v,	–4*c	=	n*v	+	32	for	c.																																																																																																	
–3

Let	r(g)	be	the	second	deriva$ve	of	2*g**3/3	–	21*g**2/2	+	10*g.	
Let	z	be	r(7).	Factor	–z*s	+	6	–	9*s**2	+	0*s	+	6*s**2.																		
–(s	+	3)*(3*s	–	2)

Let	m(i)	be	the	first	deriva$ve	of	3/55*i**5	+	0*i	–	73	+	0*i**3	+	
0*i**2	–	5/66*i**6	+	1/22*i**4.	Let	m(d)	=	0.	Calculate	d.				
–2/5,	0,	1

* Schlag, Smolensky, Fernandez, Jojic, Schmidhuber, Gao 2019 Enhancing the Transformer with Explicit 
Relational Encoding for Math Problem -Solving arXiv:1910.06611
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MATH	DATASET	ACCURACY:	AVERAGE	EM
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Standard DNNs learning highly structure-sensitive functions can create combinatorial 
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs 
can invent their own types of symbol structures 

These invented symbol structures improve performance on compositional tasks 
We can interpret these invented symbol structures (partially)

• Grammatical structure
• Algebraic structure

What we know for certain

22

Capabilities of  LEARNING

Huang, Smolensky, He, Deng, Wu 2018 Tensor Product Generation Networks for deep NLP 
learning NAACL-2018 arXiv:1709.09118

Palangi, Smolensky, He, Deng 2018 Question-answering with grammatically-interpretable 
representations AAAI-2018  arXiv:1705.08432

* Schlag, Smolensky, Fernandez, Jojic, Schmidhuber, Gao 2019 Enhancing the Transformer with Explicit 
Relational Encoding for Math Problem -Solving arXiv:1910.06611†
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Interpreting Learned Structures

TP-Transformer model, arthmetic structure 

• digits in the denominator of a fraction are assigned one set of structural relations

• digits in the numerator are assigned a different relations

TP-N2F model of MathQA solution-program generation, vectors for operators:

• general-purpose operators in one region of the vector space: add, negate, log 

• shape-specific geometric computations in a different region: square_area,	
volume_cylinder,		surface_cube 

• At one edge of the space: max,	min; at another:	factorial,	choose	 

23
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* Soulos, McCoy, Linzen, Smolensky 2019 Discovering the Compositional Structure of  Vector 
Representations with Role Learning Networks arXiv:1910.09113

What we know for certain

24

Capabilities of  LEARNING
Standard DNNs learning highly structure-sensitive functions can create combinatorial 

distributed representations (TPRs) that can be explicitly specified
Enhance: DNNs specially-designed with hidden representations that are TPRs 

can invent their own types of symbol structures 
These invented symbol structures improve performance on compositional tasks 
We can interpret these invented symbol structures (partially)
We can directly alter hidden constituents to control network outputs

Talk/poster here today

Wednesday, December 18, 19
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Precision surgery on hidden representations — Paul Soulos+

We can directly alter hidden constituents to control network outputs: SCAN task
run left twice after jump opposite right thrice

25

* Soulos, McCoy, Linzen, Smolensky 2019 Discovering the Compositional Structure of  Vector 
Representations with Role Learning Networks arXiv:1910.09113

Preprint

run : 11 left : 36 twice : 8 after : 43 jump : 10 opposite : 17 right : 4 thrice : 46 !
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN

� run : 11 + look : 11 !
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK

� jump : 10 + walk : 10 !
TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK

� left : 36 + right : 36 !
TR TR WALK TR TR WALK TR TR WALK TR LOOK TR LOOK

� twice : 8 + thrice : 8 !
TR TR WALK TR TR WALK TR TR WALK TR LOOK
TR LOOK TR LOOK

� opposite : 17 + around : 17 !
TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK
TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK
TR LOOK TR LOOK TR LOOK

Figure 2: Left: Example of successive constituent surgeries. The roles assigned to the input symbols
are indicated in the first line (e.g., run was assigned role 11). Altered output symbols are in blue.
The model produces the correct outputs for all cases shown here. Right: Mean constituent-surgery
accuracy across three runs. Standard deviation is below 1% for each number of substitutions.

6.3 PRECISION CONSTITUENT-SURGERY ON INTERNAL REPRESENTATIONS TO PRODUCE
DESIRED OUTPUTS

The substitution-accuracy results above show that if the entire learned representation is replaced by
ROLE’s approximation, the output remains correct. But do the individual words in this TPR have the
appropriate causal consequences when processed by the decoder?3

To address this causal question (Pearl, 2000), we actively intervene on the constituent structure
of the internal representations by replacing one constituent with another syntactically equivalent
one4, and see whether this produces the expected change in the output of the decoder. We take
the encoding generated by the RNN encoder E for an input such as jump opposite left, subtract
the vector embedding of the opposite constituent, add the embedding of the around constituent,
and see whether this causes the output to change from the correct output for jump opposite left
(TL TL JUMP) to the correct output for jump around left (TL JUMP TL JUMP TL JUMP TL JUMP).
The roles in these constituents are determined by the algorithm of Appendix A.8. If changing a word
leads other roles in the sequence to change (according to the algorithm), we update the encoding with
those new roles as well. Such surgery can be viewed as based in a more general extension of the
analogy approach used by Mikolov et al. (2013) for analysis of word embeddings. An example of
applying a sequence of five such constituent surgeries to a sequence are shown in Figure 2 (left).

7 PARTIALLY-COMPOSITIONAL NLP TASKS

The previous sections explored fully-compositional tasks where there is a strong signal for compo-
sitionality. In this section, we explore whether the representations of NNs trained on tasks that are
only partially-compositional also capture compositional structure. Partially-compositional tasks are
especially challenging to model because a fully-compositional model may enforce compositionality

3Historically, this question has had considerable significance: the original compositionality challenge to
neural network models of cognition by Fodor and colleagues (Fodor & Pylyshyn, 1988) insisted that constituents
of cognitive representations must individually be causally efficacious in order for those constituents to provide
an explanation of the compositionality of cognition (Fodor & McLaughlin, 1990; Fodor, 1997). That TPRs meet
the challenge of explaining compositionality was argued in Smolensky (1987; 1991).

4We extract syntactic categories from the SCAN grammar (Lake & Baroni, 2018, Supplementary Fig. 6) by
saying that two words belong to the same category if every occurrence of one could be grammatically replaced
by the other. Based on our analysis in Appendix A.8, we do not replace occurrences of and and after since the
presence of either of these words causes substantial changes in the roles assigned to the sequence.

7
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Can we interpret these invented structures sufficiently to (i) understand how DNNs 
create and process them and (ii) explain the DNNs’ task performance?

Can the newly-invented symbol systems inform our understanding of the tasks and 
our theories of how human cognition performs them?

What we don’t yet know

What we know for certain

26

Capabilities of  LEARNING
Standard DNNs learning highly structure-sensitive functions can create combinatorial 

distributed representations (TPRs) that can be explicitly specified
Enhance: DNNs specially-designed with hidden representations that are TPRs 

can invent their own types of symbol structures 
These invented symbol structures improve performance on compositional tasks 
We can interpret these invented symbol structures (partially)
We can directly alter hidden constituents to control network outputs

Thank you for your attention
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