=" Microsoft .
Find x, y

4x+3y=17, 2y-3x=0

Microsoft Blog \ Algorithms \ Next- O O ©
generation architectures bridge gap ® o o ©o
between neural and symbolic

: © o o

representations with neural symbols
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Strategy today

Compositionality and NNs: Where to start?

e Historical source of prominence of compositionality notion: Strong definition D
> No one would deny that satitying D constitutes compositionality
> Idealization, rather than empirically-validated characterization, of human cognition
» May be too strong to apply to all desired cases
» BUT: if NNs can meet this strong definition, we can dismiss in-principle arguments
claiming the impossibility of NNs displaying compositionality
» AND: (1) Identity the primitive NN competences which enable strong

compositionality
(i) Endow deep learning with these primitives

Fodor & Pylyshyn 1988. Connectionism and cognitive architecture:

A critical analysis Cognition 28: 3—71
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Strategy today

Compositionality and NNs: Where to start?
e Historical source of prominence of compositionality notion: Strong definition D

» BUT: if NNs can meet this strong definition, we can dismiss in-principle arguments

Smolensky 1987 The constituent structure of connectionist mental states: A reply to Fodor and

Pylyshyn Southern Journal of Philosophy, 26: 137-161

Fodor & Pylyshyn 1988. Connectionism and cognitive architecture: A critical analysis
Cognition 28: 3—71

Smolensky 1988 On the proper treatment of connectionism Behavioral and Brain Sciences 11: 1-23.

Also: 11: 59-74;13: 407411

Fodor & McLaughj_in 1990 Connectionism and the problem of systematicity: Why Smolensky’s
solution doesn't work Cognztion 35: 183—204

Smolensky 1991 Connectionism, constituency, and the language of thought. In Loewer & Rey
(Bds.) Meaning in Mind: Fodor and his Critics 201-227

Smolensky 1995 Constituent structure and explanation in an integrated connectionist/symbolic
cognitive architecture. In Macdonald & Macdonald (Eds.) Connectionism: Debates on Psychological

Explanation Vol 2 221-290

Fodor 1997 Connectionism and the problem of systematicity (continued): Why Smolensky's
solution still doesn’t work Cogrnition 62: 109-119

Smolensky 2006 Computational levels and integrated connectionist/symbolic explanation. In

Smolensky & Legendre The Harmonic Mind Vol 2 503—592
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Strategy today

Compositionality and NNs: Where to start?

e Historical source of prominence of compositionality notion: ‘Strong definition DI
» BUT: if NNs can meet this strong definition, we can dismiss in-principle arguments

claiming the impossibility of NNs displaying compositionality

¢ An infinite universe ‘U of discrete structures: labeled binary trees
® A recursive formal rewrite-rule grammar G that generates an infinite subset L of ‘U

o A system M has compositional behavior if it computes f: L — X where
f is recursively defined w.r.t. grammar rulesin G: X — A B; A = a; B — b:

flxa b])=fx(fa(@), fe(b))
® ‘M has compositional processing: procedure for computing f is built from subprocesses
computing fx ‘s
® ‘M has compositional representation: F&P footnote 9, p. 14 “physical instantiation
mapping of combinatorial structure” F(P&Q) = Be [F(P), F(Q)]

® ‘M has compositional learning: ?? Need an induction principle: data — G, e.g., MDL

4
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What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 720/ LEARNING

From work of the previous millenium
Next: work of this millenium on learning




What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 70/ LEARNING

Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity;,
compositionality, inferential coherence”

These are stipulated, not explained




What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 70/ LEARNING

Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity;,
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial)
representations can
Incorporate
e Type/token distinction
e Variables which can be bound to values

Smolensky 1988 Analysis of distributed representation of constituent structure in connectionist

systems. /NIPS-1987 730—739

Smolensky 1990 Tensor product variable binding and the representation of symbolic structures in
connectionist networks Artificial Intelligence 46: 159-216
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What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 70/ LEARNING

Contra F&P 1988: Symbolic (“Classical”) computation cannot explain “systematicity;,
compositionality, inferential coherence”

Massively parallel numerical computation over distributed (dense vectorial)
representations can
Incorporate
e Type/token distinction
e Variables which can be bound to values
e Embedding of combinatorial constituents within others
e Recursive structure (e.g., trees)

Legendre, Miyata & Smolensky 1991 Distributed recursive structure processing. NIPS-1990 591-597

Smolensky & Legendre 2006 The Harmonic Mind: From Neural Computation to Optimality-Theoretic
Grammar. Vol. 1: Cognitive Architecture MI'T Press.
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Recursive compositional structure ot activation vectors

A

/N

N

Activation vectorg

W;

Activation vector;

Wo

Activation vectorg: W,

Activation vectoris
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What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 70/ LEARNING

Legendre, Miyata & Smolensky 1990. Harmonic Grammar — A formal multi—level connectionist
theory of linguistic well-formedness: Theoretical foundations. Cog$e-7990 388—395

Smolensky 1993 Harmonic Grammars for formal languages. NIPS-1992 847-854.
Prince & Smolensky 1993/2004. Optimality Theory: Constraint Interaction in Generative Grammar

Smolensky & Legendre 2006 The Harmonic Mind: From Neural Computation to Optimality-Theoretic
Grammar. Vol. 2: Linguistic and Philosophical Implications MI'T Press

Cho, Goldrick & Smolensky 2017 Incremental parsing in a continuous dynamical system:
Sentence processing in Gradient Symbolic Computation [nguistics Vanguard 3:1

e fmbedding of combinatorial constituents within others

e Recursive structure (e.g., trees)
e Grammars controlling constituent combination
e New grammar formalisms that have transtormed

parts of formal linguistic theory
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What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 70/ LEARNING

Smolensky 2012 Symbolic functions from neural computation Phzlosophical Transactions of the Royal
Society — A: Mathematical, Physical and Engineering Sciences 370: 3543—3569

Massively parallel numerical computation over distributed (dense vectorial)
representations can

Incorporate
e Type/token distinction
e Variables which can be bound to values
e Embedding of combinatorial constituents within others

e Recursive structure (e.g., trees)

e Grammars controlling constituent combination

e New grammar formalisms that have transformed
parts of formal linguistic theory

Compute
e Structure sensitive functions
e Recursive functions in formally specified tamilies
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What we know for certain

Capabilities of KNOWLEDGE & PROCESSING, 70/ LEARNING

Smolensky 1995 Constituent structure and explanation in an integrated connectionist/symbolic

cognitive architecture. In Macdonald & Macdonald (Eds.) Connectionism: Debates on Psychological
Explanation Vol 2 221-290

Massively parallel numerical computation over distributed (dense vectorial)

representations
Incorporate
e Type/token distinction
e Variables which can be bound to values All this is enabled
e Embedding of combinatorial constituents within others
| by Tensor Product
e Recursive structure (e.g., trees) :
e Grammars controlling constituent combination Representations
e New grammar formalisms that have transformed (TPRS)3 prlmltIVGS
parts of formal linguistic theory enab]ing Str()ng
Compute compositionality

e Structure sensitive functions
e Recursive functions in formally specified tamilies

| 2
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What we know for certain

Capabilities of LEARNING

. e af . Jlens

Now: work of this millenium on learning

13




What we know for certain

Capabilities of LEARNING
Standard DNNss learning highly structure-sensitive functions can create combinatorial
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks

T Chen, Huang, Palangi, Smolensky, Forbus, Gao 2019 Natural-to formal-language generation
using Tensor Product Representations arXiv:1910.02339

McCoy, Linzen, Dunbar, Smolensky 2019 RNNs Implicitly Implement Tensor Product
Representations [CI.R-2079 arX1v:1812.08718

|4
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MathQA: Example answers — Kezhen Chen™

T Chen, Huang, Palangi, Smolensky, Forbus, Gao 2019 Natural-to formal-language generation
using Tensor Product Representations arXiv:1910.02339

what is the sum of the multiples of 4 between 38 and 127 inclusive ?

(add n1 const 2) (subtract n2 const 3) (add #0 #1) (subtract #1 #0) (divide #3 n0O)
(divide #2 const 2) (add #4 const 1) (multiply #6 #5)

this year , mbb consulting fired 6 % of its employees and left remaining employee salaries
unchanged . sally, a first - year post - mba consultant, noticed that that the average

( arithmetic mean ) of employee salaries at mbb was 10 % more after the employee headcount
reduction than before . the total salary pool allocated to employees after headcount reduction
is what percent of that before the headcount reduction ?

(multiply n1 const_100) ( subtract const 100 n0) (add #0 const_100) (add #1 const_4)
(multiply #2 #3) (divide #4 #0)

a high school has 360 students 1 / 2 attend the arithmetic club, 5/ 8 attend the biology club
and 3/ 4 attend the chemistry club . 3 / 8 attend all 3 clubs . if every student attends at least
one club how many students attend exactly 2 clubs .

(multiply nO n1) (multiply nO n3) (multiply nO n5) (divide #0 n2) (divide #1 n4) (divide #2 n6)
(divide #2 n4) (add #3 #4) (multiply n2 #6) (add #7 #5) (subtract #9 #8) (subtract #10 n0)
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75

70

65

60

55

50

MATH QA ACCURACY: EXACTLY MATCHING PROGRAM

Previous SOTA Our model: TP-N2F

71.89

6821 68.84

66.97

59.4

Previous (original) Previous (optimized) Ours (TP decoder only) Ours (TP encoder only) Ours (TP encoder &
decoder)
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ALGOLISP: EXAMPLE ANSWERS

consider a number, your task is to find the given number factorial
(<=argll)(-argll)(self#1)(*#2argl)(if#01#3)(lambdal #4 ) ( invokel #5 a )
consider a number, your task is to find the given number factorial
(<=argll)(-argll)(self#1)(*#2argl)(if#01#3)(lambdal #4 ) (invokel #5 a)

you are given numbers a, b and d and an array of numbers c, let how many times you can
replace a with sum of its digits before it becomes a single digit number and b be the
coordinates of one end and the length of the longest subsequence of ¢ with the first value
of the subsequence equal to one and all values except for the first equal to the previous
value plus one and d be the coordinates of another end of segment e , what is the length of
segment e rounded down

(digitsargl ) (len#0 ) (==#11) ( digitsargl ) (reduce #30+ ) (self#4 ) (+ 1 #5)

(if#2 0 #6 ) (lambdal #7 ) (invokel #8a)(==arglarg2 )(+argl 1) (if #10 #11 argl )
(lambda2 #12 ) (reducec 1 #13 ) (- #14 1) (- #9 #15 ) ( digitsargl ) (len #17 ) (== #18 1)
( digits argl ) (reduce #200+ ) (self #21 ) (+ 1 #22 ) (if #19 0 #23 ) ( lambdal #24 )
(invokel #25a ) (==arglarg2 ) (+argl 1) (if #27 #28 argl ) ( lambda2 #29 )
(reducec1#30)(-#311)(—-#26#32)(*#16#33)(-bd)(-bd) (™ #35 #36)

(+#34 #37 ) (sqrt #38 ) ( floor #39 )
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ALGOLISP ACCURACY: ANSWER / PROGRAM

Previous SOTA Our model: TP-N2F

100
95 93.06
90
85 83.8 o 83.05 84.02
7z 79.92
80 kY
75.12 g 75.31
75 B 72.28
-
70 67.54 5
@)
(@)
65 =
Q
£
60 o
o
g
55 o
@)
prd
50

LSTM2LSTM Previous SOTA Ours (TP encoder only) Ours (TP decoder only) Ours (TP encoder & decoder)

B Multiple choice answer B Exact matching program
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What we know for certain

Capabilities of LEARNING
Standard DNNss learning highly structure-sensitive functions can create combinatorial
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks

* Schlag, Smolensky, Fernandez, Jojic, Schmidhuber, Gao 2019 Enhancing the Transtformer with Explicit
Relational Encoding for Math Problem -Solving arXiv:1910.066117

19
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Mathematics Dataset (DeepMind) — Imanol Schlag™

* Schlag, Smolensky, Fernandez, Jojic, Schmidhuber, Gao 2019 Enhancing the Transformer with Explicit
Relational Encoding for Math Problem -Solving arXiv:1910.06611

Suppose 0 =2*a + 3*a — 150. Let p =106 — 101. Suppose —3*b + w + 544 =
3*w, —p*b — 5*w = -910. What is the greatest common factor of b and a?

30

Let q(r) = 33*r. Let a(y) =—y**2 + 2*y — 2. Let p be a(1). Let d be q(p).
Let n =38 + d. Solve -5*v—-11 =-3*c-0*v, -4*c =n*v + 32 for c.

-3

Let r(g) be the second derivative of 2*g**3/3 —21*g**2/2 + 10*g.
Let z be r(7). Factor —z*s + 6 —9*s**2 + 0*s + 6*s**2.

—(s + 3)*(3*s — 2)

Let m(i) be the first derivative of 3/55*i**5 + 0*i — 73 + 0*i**3 +
0*i**2 —5/66*i**6 + 1/22*i**4. Let m(d) = 0. Calculate d.

-2/5,0, 1




90

85

80

75

70

65

60

MATH DATASET ACCURACY: AVERAGE EM

Interpolation
84.24
30.67
77.42
75.33
12 § 14 >95% 18 § 25
of 56

Transformer TP-Transformer

B500k ®700k =1.7M

60

55

50

45

40

Extrapolation

52.42 5222 52.48

554

Transformer TP-Transformer

B500k ®700k =1.7M
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What we know for certain

Capabilities of LEARNING
Standard DNNss learning highly structure-sensitive functions can create combinatorial
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks
We can interpret these invented symbol structures (partially)
e Grammatical structure

® Algebraic structure

* Schlag, Smolensky, Fernandez, Jojic, Schmidhuber, Gao 2019 Enhancing the Transtormer with Explicit
Relational Encoding for Math Problem -Solving arXiv:1910.066117

Palangi, Smolensky, He, Deng 2018 Question-answering with grammatically-interpretable
representations AAAI-2078 arXiv:1705.08432

Huang, Smolensky, He, Deng, Wu 2018 Tensor Product Generation Networks for deep NLP
learning NAACI-2078 arXiv:1709.09118

22
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Interpreting Learned Structures

TP-Transtormer model, arthmetic structure

e digits in the denominator of a fraction are assigned one set of structural relations

e digits in the numerator are assigned a different relations

TP-N2F model of MathQA solution-program generation, vectors for operators:
® ogeneral-purpose operators in one region of the vector space: add, negate, log

® shape-specific geometric computations in a different region: square_area,
volume_cylinder, surface cube

® At one edge of the space: max, min; at another: factorial, choose

23
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What we know for certain

Capabilities of LEARNING

Standard DNNss learning highly structure-sensitive functions can create combinatorial
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks
We can interpret these invented symbol structures (partially)
We can directly alter hidden constituents to control network outputs

* Soulos, McCoy, Linzen, Smolensky 2019 Discovering the Compositional Structure of Vector
Representations with Role Learning Networks arX1v:1910.09113

24
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Precision surgery on hidden representations — Paul Soulos™

* Soulos, McCoy, Linzen, Smolensky 2019 Discovering the Compositional Structure ot Vector
Representations with Role Learning Networks arX1v:1910.09113

We can directly alter hidden constituents to control network outputs: SCAN task
run left twice after jump opposite right thrice

run: 11l left:36 twice:8 after:43 jump: 10 opposite: 17 right:4 thrice:46 —
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
—run: 11 +1look:11 — 100-

TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK

— jump:10 +walk:10 — 80
TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK
—left:36 + right:36 — 60
TR TR WALK TR TR WALK TR TR WALK TR LOOK TR LOOK
— twice:8 + thrice:8 — 0
0 1 2 3 — 3 o 7 8

Accuracy by number of substitutions

Accuracy

TR TR WALK TR TR WALK TR TR WALK TR LOOK
TR LOOK TR LOOK 20
— opposite: 17 4+ around: 17 —
TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK 0
TR WALK TR WALK TR WALK TR WALK TR WALK TR WALK umber of substitutions
TR LOOK TR LOOK TR LOOK

28
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What we know for certain

Capabilities of LEARNING

Standard DNNss learning highly structure-sensitive functions can create combinatorial
distributed representations (TPRs) that can be explicitly specified

Enhance: DNNs specially-designed with hidden representations that are TPRs
can invent their own types of symbol structures

These invented symbol structures improve performance on compositional tasks
We can interpret these invented symbol structures (partially)
We can directly alter hidden constituents to control network outputs

What we don’t yet know

Can we interpret these invented structures sufficiently to (i) understand how DNNs
create and process them and (ii) explain the DNNs’ task performance?

Can the newly-invented symbol systems inform our understanding of the tasks and
our theories of how human cognition performs them?

‘7ﬁw%gwufmwwaﬂawm
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