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Motivation

∙ Neurons important for working memory (WM) have stable and
long neuronal timescales

∙ Experimentally challenging to probe circuitry and connectivity
mechanisms

∙ Recurrent neural network (RNN) model can be useful

Circuit/network mechanisms required for stable temporal re-
ceptive fields critical for WM maintenance
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Spiking RNN Model

Fixation

1 s
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∙ Continuous RNNs converted to Leaky Integrate-and-Fire (LIF)
RNNs [1]

∙ 40 RNNs (N = 200) trained to perform a delayed match-to-sample
(DMS) task

∙ 80% excitatory and 20% inhibitory
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Spiking RNN Model
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Experimental Data

Fixation

1 s
Cue
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Delay

1.5 s
Sample

0.5 s

Delay SampleFixation Cue
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Spiking RNN Model∙ Public dataset (crcns.org) – Constantinidis lab [2–4]

∙ Four monkeys trained to perform two delayed match-to-sample
tasks: spatial and feature tasks

∙ 959 dorsolateral prefrontal cortex (dlPFC) units
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Overview

Spiking RNN Model
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Neuronal Timescales

∙ Spike-count autocorrelation
during fixation

∙ Spike counts in successive
time bins (w = 50 ms)

∙ Correlation between two time
bins separated by a lag (∆)
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Neuronal Timescales
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Neuronal Timescales
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Heterogeneous Neuronal Timescales
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Long σ units involved with stable coding
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WM-specific Neuronal Timescales
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WM-specific Neuronal Timescales
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Summary

∙ Striking similarities b/w RNN model of WM and experimental data

∙ Both utilize units with stable temporal receptive fields to perform
WM

∙ Need to characterize network/circuit dynamics that lead to long
timescales
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Thank you!
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