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tl;dr

● Our technique can uncover latent compositionality in 
vector representations

● Interpreting compositional structure sheds light on 
how these models function

● We understand the inner workings well enough to 
write down a symbolic algorithm to produce the neural 
encoding

● Our approximation allows us to directly manipulate the 
internal representations to produce desired behavior.
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Smolensky (1990)
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Tensor Product Encoder

McCoy, Linzen, Dunbar, and Smolensky (2019)
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Dissecting Compositionality in Vector 
Representations (DISCOVER)
Goal: Discover implicit compositional structure in learned encodings E

Approach: Discover implicit compositional structure in the target network's 
learned encoding E by approximating E with Ê

Evaluation: Pass the compositional encoding to the non-compositional decoder.
There is no fine-tuning.

Ê
Tensor Product 
Encoder

EEncoder Decoder

Ê
Tensor Product 
Encoder

Decoder

Target Network

Minimize MSE(Ê, E)
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What structure is the target network learning?

4,2,7,9 4,2,7,9
RNN Encoder RNN Decoder

{4:first, 2:second, 7:third, 9:fourth}

Task: Autoencode

Left-to-right (LTR) seems intuitive for copying. We want a FIFO queue to maintain the order.

4,2,7,9 9,7,2,4
RNN Encoder RNN Decoder

{4:fourth, 2:third, 7:second, 9:first}

Task: Reversal

Right-to-left (RTL) seems intuitive for reversal. We want a LIFO stack to reverse the order.
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Differentiable Role Assignment

4,2,7,9 4,2,7,9
Encoder Decoder

{4:?, 2:?, 7:?, 9:?}

r11 r..1 rn1

r1d r..d rnd

r1.. rn..r..,..

Soft attention over the learned Role
Matrix for role assignment

n roles of dimension d
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● Using manual analysis of the role predictions, we created a 
symbolic algorithm for assigning roles to fillers

● The algorithm matches 98.7% of the role learning 
network's predictions on the test set.

● Most roles are defined based on position in a subclause 
(e.g. last element of the first subclause )

● Example roles:
● Role 30: Always assigned to and
● Role 17: Only appears in sequences that contain the 

word after
● These two roles allow the decoder to understand the basic 

syntax of the command.

SCAN Role Scheme Interpretation



Differentiable API Design

● Consider SCAN as a coding assignment between a pair of students.
● Let's call them “Encoder” and “Decoder”



Differentiable API Design

? encode(List<Input Tokens>)

List<Output Tokens> decode(?)

● Consider SCAN as a coding assignment between a pair of students.
● Let's call them “Encoder” and “Decoder”

● They split the assignment  so that Encoder parses the input into a data 
structure, and Decoder produces the output from this data structure



Differentiable API Design

? encode(List<Input Tokens>)

List<Output Tokens> decode(?)

● Consider SCAN as a coding assignment between a pair of students.
● Let's call them “Encoder” and “Decoder”

● They split the assignment  so that Encoder parses the input into a data 
structure, and Decoder produces the output from this data structure

<isAnd, isAfter, subclauseOneAction, subclauseOneSecondWord...> encode(List<Input Tokens>)

List<Output Tokens> decode(<isAnd, isAfter, subclauseOneAction, subclauseOneSecondWord...>)



run r1

E
Linear

jump

twice

jump r1

E
Linear

emb(jump twice) – TPR(jump) + TPR(run) = emb(run twice)

JUMP JUMP  RUN RUN→

Constituent Surgery

- +

?
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Constituent Surgery (Continued)



Sentence Embedding Models

Mean-squared error for learned and engineered role schemes.



Future Directions

● Train the Tensor Product Encoder end-to-end
● Tensor Product Decoder
● Does a compositional bias improve training?

● Train faster, fewer parameters, better generalization
● Improving natural language models with a 

compositional bias



Thank you!

● Run the code yourself
● https://github.com/psoulos/role-decomposition

● Want more details?
● Come by the poster
● Check out the paper: 
https://arxiv.org/abs/1910.09113
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