Discovering the Compositional Structure of Vector Representations with Role Learning Networks

Paul Soulos
Tom McCoy
Tal Linzen
Paul Smolensky

1 Johns Hopkins University
2 Microsoft
tl;dr

- Our technique can uncover latent compositionality in vector representations
- Interpreting compositional structure sheds light on how these models function
- We understand the inner workings well enough to write down a symbolic algorithm to produce the neural encoding
- Our approximation allows us to directly manipulate the internal representations to produce desired behavior.
What's in a compositional representation?

Consider a sequence of digits [4, 2, 7, 9]

- A set of fillers (tokens)
- Example: \{4, 2, 7, 9\}
What's in a compositional representation?

Consider a sequence of digits [4, 2, 7, 9]

- A set of fillers (tokens)
 - Example: {4, 2, 7, 9}
- A set of roles (positions in the structure)
 - Example: Left-to-right {first, second, third, fourth}
What's in a compositional representation?

Consider a sequence of digits [4, 2, 7, 9]

- A set of fillers (tokens)
 - Example: {4, 2, 7, 9}
- A set of roles (positions in the structure)
 - Example: Left-to-right {first, second, third, fourth}
- A binding operation (placing a filler in a specific role filler:role)
 - Example: {4:first}
What's in a compositional representation?

Consider a sequence of digits [4, 2, 7, 9]

- A set of fillers (tokens)
 - Example: {4, 2, 7, 9}
- A set of roles (positions in the structure)
 - Example: Left-to-right {first, second, third, fourth}
- A binding operation (placing a filler in a specific role filler:role)
 - Example: {4: first}
- A composition operation (stitching all of the bound filler:roles together)
 - Example: {4: first, 2: second, 7: third, 9: fourth}
How can neural networks represent compositional structure?

{4: first, 2: second, 7: third, 9: fourth}
How can neural networks represent compositional structure?

Task: Autoencode

Tensor Product Representations (TPRs)

- A set of fillers (tokens)
- A set of roles (positions in the structure)
- A binding operation (placing a filler in a specific role filler:role)
- A composition operation (stitching all of the bound filler:roles together

Smolensky (1990)
How can neural networks represent compositional structure?

Tensor Product Representations (TPRs)

- A set of fillers (tokens)

 Every filler f_i is vector

- A set of roles (positions in the structure)

 Every role r_i is vector

- A binding operation (placing a filler in a specific role filler:role)

 Tensor product: $f_i \otimes r_i$

- A composition operation (stitching all of the bound filler:roles together)

 Sum: $\sum f_i \otimes r_i$

Smolensky (1990)
Tensor Product Encoder

McCoy, Linzen, Dunbar, and Smolensky (2019)
Dissecting Compositionality in Vector Representations (DISCOVER)

Goal: Discover implicit compositional structure in learned encodings E

Target Network

$E = \sum f_i \otimes r_i$
Dissecting Compositionality in Vector Representations (DISCOVER)

Goal: Discover implicit compositional structure in learned encodings E

Approach: Discover implicit compositional structure in the target network's learned encoding E by approximating E with \hat{E}

$$E = \sum f_i \otimes r_i$$

$$\hat{E} = \sum f_i \otimes r_i$$

Minimize $\text{MSE}(\hat{E}, E)$
Dissecting Compositionality in Vector Representations (DISCOVER)

Goal: Discover implicit compositional structure in learned encodings E

Approach: Discover implicit compositional structure in the target network's learned encoding E by approximating E with \hat{E}

Evaluation: Pass the compositional encoding to the non-compositional decoder. There is no fine-tuning.

$E \approx \sum f_i \otimes r_i$

$\hat{E} = \sum f_i \otimes r_i$

Minimize $\text{MSE}(\hat{E}, E)$
What structure is the target network learning?

Task: Autoencode

4,2,7,9 → [complex representation] → 4,2,7,9

{4:first, 2:second, 7:third, 9:fourth}

Left-to-right (LTR) seems intuitive for copying. We want a FIFO queue to maintain the order.
What structure is the target network learning?

Task: Autoencode

Left-to-right (LTR) seems intuitive for copying. We want a FIFO queue to maintain the order.

Task: Reversal

Right-to-left (RTL) seems intuitive for reversal. We want a LIFO stack to reverse the order.
Engineered Roles

McCoy, Linzen, Dunbar, and Smolensky (2019)
Engineered Roles

McCoy, Linzen, Dunbar, and Smolensky (2019)

Substitution accuracy

Copying

Reversal

Left-to-right
Right-to-left
Bidirectional

McCoy, Linzen, Dunbar, and Smolensky (2019)
Differentiable Role Assignment

Encoder

Decoder

4,2,7,9

{4:?, 2:?, 7:?, 9:?}

4,2,7,9
Differentiable Role Assignment

Encoder

Decoder

\{4:, 2:, 7:, 9:\}

\[\sum f_i \otimes r_i\]

\[\begin{array}{ccc}
 r_{11} & r_{1..} & r_{1n1} \\
 r_{1..} & r_{...} & r_{1n} \\
 r_{1d} & r_{..d} & r_{nd}
\end{array}\]

Role Matrix \(R \)
Differentiable Role Assignment

Encoder

Decoder

\{4?:, 2?:, 7?:, 9?:\}

\sum f_i \otimes r_i

Soft attention over the learned Role Matrix for role assignment

n roles of dimension d

Role Matrix R
Target network is a GRU seq2seq architecture

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>jump</td>
<td>JUMP</td>
</tr>
<tr>
<td>jump left</td>
<td>LTURN JUMP</td>
</tr>
<tr>
<td>jump thrice</td>
<td>JUMP JUMP JUMP</td>
</tr>
<tr>
<td>jump opposite left after walk around right</td>
<td>RTURN WALK RTURN WALK RTURN WALK RTURN WALK LTURN LTURN JUMP</td>
</tr>
</tbody>
</table>
SCAN

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>jump</td>
<td>JUMP</td>
</tr>
<tr>
<td>jump left</td>
<td>LTURN JUMP</td>
</tr>
<tr>
<td>jump thrice</td>
<td>JUMP JUMP JUMP</td>
</tr>
<tr>
<td>jump opposite left after walk around right</td>
<td>RTURN WALK RTURN WALK RTURN WALK LTURN LTURN JUMP</td>
</tr>
</tbody>
</table>

Target network is a GRU seq2seq architecture

<table>
<thead>
<tr>
<th>Target</th>
<th>Learned</th>
<th>LTR</th>
<th>RTL</th>
<th>Bi</th>
<th>Tree</th>
<th>BOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.5%</td>
<td>94.8%</td>
<td>6.7%</td>
<td>7.0%</td>
<td>10.7%</td>
<td>4.3%</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Table 1: Substitution accuracy for various encoders

Lake and Baroni (2018)
Using manual analysis of the role predictions, we created a symbolic algorithm for assigning roles to fillers.
The algorithm matches 98.7% of the role learning network's predictions on the test set.
Using manual analysis of the role predictions, we created a symbolic algorithm for assigning roles to fillers.

The algorithm matches 98.7% of the role learning network's predictions on the test set.

Most roles are defined based on position in a subclause (e.g. last element of the first subclause)

Example roles:
- Role 30: Always assigned to and
- Role 17: Only appears in sequences that contain the word after

These two roles allow the decoder to understand the basic syntax of the command.
Differentiable API Design

- Consider SCAN as a coding assignment between a pair of students.
 - Let's call them “Encoder” and “Decoder”
Differentiable API Design

- Consider SCAN as a coding assignment between a pair of students.
- Let's call them “Encoder” and “Decoder”
- They split the assignment so that Encoder parses the input into a data structure, and Decoder produces the output from this data structure

```java
? encode(List<Input Tokens>)

List<Output Tokens> decode(?)
```
Differentiable API Design

- Consider SCAN as a coding assignment between a pair of students.
- Let's call them “Encoder” and “Decoder”
- They split the assignment so that Encoder parses the input into a data structure, and Decoder produces the output from this data structure

```java
encode(List<Input Tokens>)
List<Output Tokens> decode(?)
```

<isAnd, isAfter, subclauseOneAction, subclauseOneSecondWord...> encode(List<Input Tokens>)
List<Output Tokens> decode(<isAnd, isAfter, subclauseOneAction, subclauseOneSecondWord...>)
Constituent Surgery

$$\text{emb(jump twice)} - \text{TPR(jump)} + \text{TPR(run)} = \text{emb(run twice)}$$

JUMP JUMP \rightarrow RUN RUN
Constituent Surgery

run:11 left:36 twice:8 after:43 jump:10 opposite:17 right:4 thrice:46 →
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
– run:11 + look:11 →
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
Constituent Surgery

run: 11 left: 36 twice: 8 after: 43 jump: 10 opposite: 17 right: 4 thrice: 46 →
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
− run: 11 + look: 11 →
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
− jump: 10 + walk: 10 →
TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK
Constituent Surgery

run:11 left:36 twice:8 after:43 jump:10 opposite:17 right:4 thrice:46 →
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
– run:11 + look:11 →
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
– jump:10 + walk:10 →
TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK
– left:36 + right:36 →
TR TR WALK TR TR WALK TR TR WALK TR LOOK TR LOOK
Constituent Surgery

run:11 left:36 twice:8 after:43 jump:10 opposite:17 right:4 thrice:46 →
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
– run:11 + look:11 →
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
– jump:10 + walk:10 →
TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK
– left:36 + right:36 →
TR TR WALK TR TR WALK TR TR WALK TR TR LOOK TR LOOK
– twice:8 + thrice:8 →
TR TR WALK TR TR WALK TR TR WALK TR TR LOOK TR LOOK TR LOOK
Constituent Surgery

run:11 left:36 twice:8 after:43 jump:10 opposite:17 right:4 thrice:46 →
TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
 − run:11 + look:11 →
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
 − jump:10 + walk:10 →
TR TR WALK TR TR WALK TR TR WALK TL LOOK TL LOOK
 − left:36 + right:36 →
TR TR WALK TR TR WALK TR TR WALK TR TR WALK TR LOOK TR LOOK
 − twice:8 + thrice:8 →
TR TR WALK TR TR WALK TR TR WALK TR TR WALK TR LOOK TR LOOK TR LOOK
 − opposite:17 + around:17 →
TR WALK TR LOOK TR LOOK TR LOOK
Sentence Embedding Models

<table>
<thead>
<tr>
<th></th>
<th>Learned</th>
<th>LTR</th>
<th>RTL</th>
<th>Bi</th>
<th>Tree</th>
<th>BOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>InferSent</td>
<td>4.05e-4</td>
<td>8.21e-4</td>
<td>9.70e-4</td>
<td>9.16e-4</td>
<td>7.78e-4</td>
<td>4.34e-4</td>
</tr>
<tr>
<td>Skip-thought</td>
<td>9.30e-5</td>
<td>9.91e-5</td>
<td>1.78e-3</td>
<td>3.95e-4</td>
<td>9.64e-5</td>
<td>8.87e-5</td>
</tr>
<tr>
<td>SST</td>
<td>5.58e-3</td>
<td>8.35e-3</td>
<td>9.29e-3</td>
<td>8.55e-3</td>
<td>5.99e-3</td>
<td>9.38e-3</td>
</tr>
<tr>
<td>SPINN</td>
<td>.139</td>
<td>.184</td>
<td>.189</td>
<td>.181</td>
<td>.178</td>
<td>.176</td>
</tr>
</tbody>
</table>

Mean-squared error for learned and engineered role schemes.
Future Directions

- Train the Tensor Product Encoder end-to-end
- Tensor Product Decoder
- Does a compositional bias improve training?
 - Train faster, fewer parameters, better generalization
- Improving natural language models with a compositional bias
Thank you!

- Run the code yourself
 - https://github.com/psoulos/role-decomposition

- Want more details?
 - Come by the poster
 - Check out the paper:

Acknowledgements
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1746891, and work partially supported by NSF INSPIRE grant BCS-1344269. All opinions are our own.