
Discovering the compositional structure of vector
representations with Role Learning Networks

Paul Soulos,1 R. Thomas McCoy,1 Tal Linzen,1, & Paul Smolensky2,1

1Department of Cognitive Science, Johns Hopkins University
2Microsoft Research AI, Redmond, WA USA

{psoulos1,tom.mccoy,tal.linzen,smolensky}@jhu.edu

Abstract

Neural networks are able to perform tasks that rely on compositional structure
even though they lack obvious mechanisms for representing this structure. To
analyze the internal representations that enable such success, we propose ROLE, a
technique that detects whether these representations implicitly encode symbolic
structure. ROLE learns to approximate the representations of a target encoder E
by learning a symbolic constituent structure and an embedding of that structure
into E’s representational vector space. The constituents of the approximating
symbol structure are defined by structural positions — roles — that can be filled
by symbols. We show that when E is constructed to explicitly embed a particular
type of structure (string or tree), ROLE successfully extracts the ground-truth
roles defining that structure. We then analyze a GRU seq2seq network trained to
perform a more complex compositional task (SCAN), where there is no ground
truth role scheme available. For this model, ROLE successfully discovers an
interpretable symbolic structure that the model implicitly uses to perform the
SCAN task, providing a comprehensive account of the representations that drive
the behavior of a frequently-used but hard-to-interpret type of model. We verify
the causal importance of the discovered symbolic structure by showing that, when
we systematically manipulate hidden embeddings based on this symbolic structure,
the model’s resulting output is changed in the way predicted by our analysis.

1 Overview

Certain AI tasks consist in computing a function ϕ that is governed by strict rules: e.g., if ϕ is the
function mapping a mathematical expression to its value (e.g., mapping ‘19−2∗7’ to 5), then ϕ obeys
the rule that ϕ(x+ y) = sum(ϕ(x), ϕ(y)) for any expressions x and y. This rule is compositional:
the output of a structure (here, x+ y) is a function of the outputs of the structure’s constituents (here,
x and y). For a fully-compositional task, completely determined by compositional rules, an AI
system that can assign appropriate symbolic structures to inputs and apply appropriate compositional
rules to these structures will correctly process arbitrary novel combinations of familiar constituents.
This is a core capability of symbolic AI systems. Other tasks, including most natural language tasks
such as machine translation, are only partially characterizable by compositional rules because natural
language is only partially compositional in nature. On these “partially-compositional” AI tasks,
this strategy of compositional analysis has demonstrated considerable, but limited, generalization.

Deep learning research has shown that Neural Networks (NNs) often surpass symbolic AI systems
for partially-compositional tasks [21], and exhibit good generalization (although generally falling
short of symbolic AI systems) on fully-compositional tasks [11, 12]. Given that standard NNs have
no obvious mechanisms for representing symbolic structures, parsing inputs into such structures, nor
applying compositional symbolic rules to them, this success raises the question we address in this

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



paper: How do NNs achieve such strong generalization on partially-compositional tasks, and good
performance on fully-compositional tasks?

An important step towards answering this question was reported in McCoy et al. [12], which showed
that when trained on highly compositional tasks, standard NNs learned representations that were
well approximated by symbolic structures (Sec. 2). We refer to the networks to be analyzed as
target NNs, because we will propose a new type of NN (in Sec. 3) — the Role Learner (ROLE)
— which is used to analyze the target network. In contrast with the analysis model of McCoy et al.
[12], which relies on a hand-specified hypothesis about the underlying structure, ROLE automatically
learns a symbolic structure that best approximates the internal representation of the target network.
Automating the discovery of structural hypotheses provides two advantages. First, ROLE achieves
success at analyzing networks for which it is not clear what the underlying structure is. We show this
in Sec. 5, where ROLE successfully uncovers the symbolic structures learned by a seq2seq RNN
trained on the SCAN task [11]. Second, removing the need for hand-specified hypotheses allows the
data to speak for itself, which simplifies the burden on the user, who only needs to provide input
sequences and associated embeddings.

2 NN embedding of symbol structures

We build on McCoy et al. [12], which introduced the analysis task DISCOVER (DISsecting COm-
positionality in VEctor Representations): take a NN and, to the extent possible, find an explicitly-
compositional approximation to its internal distributed representations. [12] showed that, in GRU
[4] encoder-decoder networks performing simple, fully-compositional string manipulations, the
medial encoding (between encoder and decoder) could be extremely well approximated, up to
a linear transformation, by Tensor Product Representations (TPRs) [18], which are explicitly-
compositional vector embeddings of symbolic structures. To represent a string of symbols as a TPR,
the symbols in the string 337 might be parsed into three constituents {3 : pos1, 7 : pos3, 3 : pos2},
where posn is the role of nth position from the left edge of the string; other role schemes are also
possible, such as roles denoting right-to-left position. The embedding of a constituent 7 : pos3 is
e(7 : pos3) = eF(7)⊗ eR(pos3), where eR, eF are respectively a vector embedding of the roles and
a vector embedding of the fillers of those roles: the digits. The embedding of the whole string is the
sum of the embeddings of its constituents. In general, for a symbol structure S with roles {rk} that
are respectively filled by the symbols {fk}, eTPR(S) =

∑
k eF(fk)⊗ eR(rk).

The main technical contribution of the present paper is the Role Learner (ROLE) model, a RNN
network that learns its own role scheme to optimize the fit of a TPR approximation to a given set
of internal representations in a pre-trained target NN. This makes the DISCOVER framework more
general by removing the need for human-generated hypotheses as to the role schemes the network
might be implementing. Learned role schemes, we will see in Sec. 5.1, can enable good TPR
approximation of networks for which human-generated role schemes fail.

This work falls within the larger paradigm of using analysis techniques to interpret neural networks
(see [3] for a recent survey), often including a focus on compositional structure [9, 8, 11, 6]. Most
closely related are the approaches of [2], [5], and [1], who also propose methods for uncovering
symbolic structure in vector representations, and [14] and [20], which also seek to understand neural
networks by extracting more interpretable symbolic models that approximate their behavior.

3 The Role Learner (ROLE) Model

ROLE1 produces an embedding of an input string S by producing a TPR T(S) and then applying
a linear transformation W. ROLE is trained to approximate a pre-trained target string-encoder E .
Given a set of N training strings {S(1), . . . , S(N)}, ROLE minimizes the total mean-squared error
(MSE) between its output WT(S(i)) and E’s corresponding output, E(S(i)).
ROLE is an extension of the Tensor-Product Encoder (TPE) introduced in McCoy et al. [12] , which
produces a linearly-transformed TPR given a string of symbols and pre-assigned role labels for
each symbol (see Appendix A.1 for details). Crucially, ROLE is not given role labels for the input
symbols, but learns to compute them. More precisely, it learns a dictionary of nR dR-dimensional

1Code available at https://github.com/psoulos/role-decomposition

2



role-embedding vectors, R ∈ RdR×nR , and, for each input symbol st, computes a soft-attention
vector at over these role vectors: the role vector assigned to st is then the attention-weighted linear
combination of role vectors, rt = Rat.

ROLE uses an LSTM [7] to compute the role-assigning attention-vectors at from its learned embed-
ding F of the input symbols st: at each t, the hidden state of the LSTM passes through a linear layer
and then a softmax to produce at (depicted in Appendix A.2). Since a TPR for a discrete symbol
structure deploys a discrete set of roles specifying discrete structural positions, ideally a single role
would be selected for each st: at would be one-hot. We add regularization similar to that in [15] to
encourage one-hot vecotrs (Appendix A.3).

4 A simple fully-compositional task

We first apply ROLE to two target Tensor Product Encoder (TPE) models which are fully compo-
sitional by design. Since we know what role scheme each target model deploys, we can test how
well ROLE learns these ground-truth roles. The TPEs are trained on the fully compositional task of
autoencoding sequences of digits. We use two types of TPEs: one that uses a simple left-to-right role
scheme and one that uses a complex tree position role scheme (see [12] for explanations of the various
role schemes). We analyze the performance of ROLE in two ways. Substitution Accuracy is the
probability that the decoder produces the correct output string when it is fed the ROLE approximation.
The V-Measure [17] assesses the extent to which the clustering of the role vectors assigned by ROLE
matches the ground truth role assignments.

The ROLE approximation of the left-to-right TPE attained perfect performance, with a substitution
accuracy of 100% and a V-Measure of 1.0, indicating that the role scheme it learned perfectly matched
the ground truth. On the significantly more complex case of tree position roles, ROLE achieves
essentially the same accuracy as the target encoder E and has considerable success at recovering the
ground truth roles for the vectors it was analyzing (target accuracy = 98.62%, substitution accuracy
= 98.61%, V-Measure = 0.815). These results show that, when a target model has a known fully
compositional structure, ROLE can successfully find that structure.

5 The SCAN task

We have established that ROLE can uncover the compositional structure used by a model that is
compositional by design. But how can models without explicit compositional structure still be
as successful at fully compositional tasks as fully compositional models? Our hypothesis is that,
though these models have no constraint forcing them to be compositional, they still have the ability
to implicitly learn compositional structure. To test this hypothesis, we apply ROLE to a standard
RNN-based seq2seq [19] model trained on a fully compositional task. Because the RNN has no
constraint forcing it to use TPRs, we do not know a priori whether there exists any solution.

We consider the SCAN task [11], which was designed to test compositional generalization and
systematicity. SCAN is a synthetic sequence-to-sequence mapping task, with an input sequence
describing an action plan, e.g., jump opposite left, being mapped to a sequence of primitive
actions, e.g., TL TL JUMP (see Sec. 5.2 for a complex example). We use TL to abbreviate TURN_LEFT,
sometimes written LTURN; similarly, we use TR for TURN_RIGHT. The SCAN mapping is defined by
a complete set of compositional rules [11, Supplementary Fig. 7].

5.1 The compositional structure of SCAN encoder representations

For our target SCAN encoder E , we trained a standard GRU (see Appendix A.4 for details). E
achieves 98.47% (full-string) accuracy on the test set. We provide ROLE with 50 roles to use as it
wants (additional training information is in Appendix A.5). We evaluate the substitution accuracy
that this learned role scheme provides in three ways. The continuous method tests ROLE in the same
way as it was trained, with input symbol st assigned role vector rt = Rat. In the snapped method,
at is replaced at evaluation time by the one-hot vector mt singling out role mt = argmax(at):
rt = Rmt. Our final evaluation method, the discrete method, uses discrete roles without having
such a train/test discrepancy; in this method, we use the one-hot vector mt to output roles for every
symbol in the dataset and then train a TPE which uses the one-hot vector mt as input during training.

3



Table 1: Mean substitution accuracy for learned (bold) and pre-defined role schemes on SCAN across
three random initializations. Standard deviation was below 1% for all schemes except for snapped.

Continuous Snapped Discrete LTR RTL Bi Tree Wickel BOW

94.83% 81.71% ±7.28 92.44% 6.68% 6.96% 10.72% 4.31% 44.00% 4.52%

The mean substitution accuracy for various learned and predefined role schemes is shown in Table 1.
All of the predefined role schemes provide poor approximations, none surpassing 44.00% accuracy.
The role scheme learned by ROLE does significantly better than any of the predefined role schemes.
The success of ROLE shows that the target model’s compositional behavior relies on compositional
internal representations: it was by no means guaranteed to be the case that ROLE would be successful
here, so the fact that it is successful tells us that the encoder has learned compositional representations.

5.2 Precision constituent-surgery on internal representations to produce desired outputs

The substitution-accuracy results above show that if the entire learned representation is replaced
by ROLE’s approximation, the output remains correct. But do the individual words in this TPR
have the appropriate causal consequences when processed by the decoder? To address this causal
question [16], we actively intervene on the constituent structure of the internal representations by
replacing one constituent with another syntactically equivalent one, and see whether this produces the
expected change in the output of the decoder. We take the encoding generated by the RNN encoder
E for an input such as jump opposite left, subtract the vector embedding of the opposite
constituent, add the embedding of the around constituent, and see whether this causes the output
to change from the correct output for jump opposite left (TL TL JUMP) to the correct output
for jump around left (TL JUMP TL JUMP TL JUMP TL JUMP). The roles in these constituents are
determined by the algorithm described in Appendix A.6. If changing a word leads other roles in the
sequence to change (according to the algorithm), we update the encoding with those new roles as
well. Such surgery can be viewed as based in a more general extension of the analogy approach used
by Mikolov et al. [13] for analysis of word embeddings. An example of applying a sequence of two
such constituent surgeries to a sequence are shown in Figure 1 (left).

The proportion of cases for which a random sequence of k such successive surgeries produced the
correct output at each step is shown in Figure 1 (right). The baseline of 0 substitutions shows the
encoder’s accuracy of 98.5%. The accuracy stays above 83% for any number of successive surgeries.

6 Conclusion

We have introduced ROLE, a neural network that learns to approximate the representations of an
existing target neural network E using an explicit symbolic structure. ROLE successfully discovers
symbolic structure both in models that explicitly define this structure and in an RNN without explicit
structure trained on the fully-compositional SCAN task. Uncovering the latent symbolic structure of
NN representations on fully-compositional tasks is a significant step towards explaining how they
can achieve the level of compositional generalization that they do, and in future work we plan to use
ROLE to impart a bias for compositionality in models trained on partially compositional tasks.

run : 11 left : 36 twice : 8 after : 43 jump : 10 opposite : 17 right : 4 thrice : 46→

TR TR JUMP TR TR JUMP TR TR JUMP TL RUN TL RUN
− run : 11 + look : 11→
TR TR JUMP TR TR JUMP TR TR JUMP TL LOOK TL LOOK
− opposite : 17 + around : 17→
TR JUMP TR JUMP TR JUMP TR JUMP TR JUMP TR JUMP TR JUMP TR JUMP TR JUMP TR JUMP
TL JUMP TR JUMP TL LOOK TL

Figure 1: Left: Example of two successive constituent surgeries. Altered output symbols are in blue.
Right: Mean constituent-surgery accuracy across three runs.

4



7 Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. 1746891, and work partially supported by NSF grant BCS-
1344269. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation.

For helpful comments we are grateful to the members of the Johns Hopkins Neurosymbolic Compu-
tation group and the Microsoft Research AI Deep Learning Group. Any errors remain our own.

References
[1] Samira Abnar, Lisa Beinborn, Rochelle Choenni, and Willem Zuidema. Blackbox meets

blackbox: Representational similarity & stability analysis of neural language models and brains.
In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 191–203, Florence, Italy, August 2019. Association for Computational
Linguistics. doi: 10.18653/v1/W19-4820. URL https://www.aclweb.org/anthology/
W19-4820.

[2] Jacob Andreas. Measuring compositionality in representation learning. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=HJz05o0qK7.

[3] Yonatan Belinkov and James Glass. Analysis methods in neural language processing: A survey.
Transactions of the Association for Computational Linguistics, 7:49–72, 2019.

[4] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, October
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https:
//www.aclweb.org/anthology/D14-1179.

[5] Grzegorz Chrupała and Afra Alishahi. Correlating neural and symbolic representations of lan-
guage. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 2952–2962, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-1283. URL https://www.aclweb.org/anthology/P19-1283.

[6] John Hewitt and Christopher D Manning. A structural probe for finding syntax in word
representations. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4129–4138, 2019.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[8] Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and’diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure. Journal of
Artificial Intelligence Research, 61:907–926, 2018.

[9] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. The compositionality of neural
networks: integrating symbolism and connectionism. arXiv preprint arXiv:1908.08351, 2019.

[10] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference for Learning Representations, 2015.

[11] Brenden M. Lake and Marco Baroni. Generalization without systematicity: On the composi-
tional skills of sequence-to-sequence recurrent networks. In ICML, 2018. arXiv 1711.00350v3.

[12] R. Thomas McCoy, Tal Linzen, Ewan Dunbar, and Paul Smolensky. RNNs implicitly implement
tensor-product representations. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=BJx0sjC5FX.

5

https://www.aclweb.org/anthology/W19-4820
https://www.aclweb.org/anthology/W19-4820
https://openreview.net/forum?id=HJz05o0qK7
https://openreview.net/forum?id=HJz05o0qK7
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/P19-1283
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=BJx0sjC5FX


[13] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of NAACL-HLT, pages 746–751, 2013.

[14] Christian W Omlin and C Lee Giles. Extraction of rules from discrete-time recurrent neural
networks. Neural networks, 9(1):41–52, 1996.

[15] Hamid Palangi, Paul Smolensky, Xiaodong He, and Li Deng. Question-answering with
grammatically-interpretable representations. In AAAI, 2017.

[16] Judea Pearl. Causality. MIT Press, Cambridge, MA, 2000.

[17] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning(EMNLP-
CoNLL), pages 410–420, 2007.

[18] P. Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artif. Intell., 46(1-2):159–216, November 1990. ISSN 0004-3702. doi:
10.1016/0004-3702(90)90007-M. URL http://dx.doi.org/10.1016/0004-3702(90)
90007-M.

[19] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[20] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural
networks using queries and counterexamples. In ICML, pages 5244–5253, 2018.

[21] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo,
Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey
Dean. Google’s neural machine translation system: Bridging the gap between human and
machine translation. CoRR, abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.
08144.

6

http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://dx.doi.org/10.1016/0004-3702(90)90007-M
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144


A Appendix

A.1 Tensor Product Encoder (TPE) Architecture

Figure 2: The Tensor Product Encoder architecture. The yellow circle is an embedding layer for
the fillers, and the blue circle is an embedding layer for the roles. These two vector embeddings are
combined by an outer product to produce the green matrix representing the TPR of the constituent.
All of the constituents are summed together to produce the TPR of the sequence, and then a linear
transformation is applied to resize the TPR to the target encoders dimensionality. ROLE replaces the
role embedding layer and directly produces the blue role vector.

A.2 The Role Learner (ROLE) Architecture

Figure 3: The role learning module. The role attention vector at is encouraged to be one-hot through
regularization; if at were one-hot, the produced role embedding rt would correspond directly to one
of the roles defined in the role matrix R. The LSTM can be unidirectional or bidirectional.

A.3 ROLE regularization

Letting A = {at}Tt=1, the regularization term applied during ROLE training isR = λ(R1+R2+R3),
where λ is a regularization hyperparameter and:

R1(A) =

T∑
t=1

nR∑
ρ=1

[at]ρ(1− [at]ρ); R2(A) = −
T∑
t=1

nR∑
ρ=1

[at]
2
ρ; R3(A) =

nR∑
ρ=1

([sA]ρ(1− [sA]ρ))
2

Since each at results from a softmax, its elements are positive and sum to 1. Thus the factors in
R1(A) are all non-negative, so R1 assumes its minimal value of 0 when each at has binary elements;
since these elements must sum to 1, such an at must be one-hot. R2(A) is also minimized when each

7



at is one-hot because when a vector’s L1 norm is 1, its L2 norm is maximized when it is one-hot.
Although each of these terms individually favor one-hot vectors, empirically we find that using both
terms helps the training process. In a discrete symbolic structure, each position can hold at most
one symbol, and the final term R3 in ROLE’s regularizer R is designed to encourage this. In the
vector sA =

∑T
t=1 at, the ρth element is the total attention weight, over all symbols in the string,

assigned to the ρth role: in the discrete case, this must be 0 (if no symbol is assigned this role) or 1
(if a single symbol is assigned this role). Thus R3 is minimized when all elements of s are 0 or 1 (R3

is similar to R1, but with squared terms since we are no longer assured each element is at most 1). It
is important to normalize each role embedding in the role matrix R so that small attention weights
have correspondingly small impacts on the weighted-sum role embedding.

A.4 RNN trained on SCAN

To train the standard RNN on SCAN, we ran a limited hyperparameter search similar to the procedure
in Lake and Baroni [11]. Since our goal was to produce a single embedding that captured the entire
input sequence, we fixed the architecture to GRU with a single hidden layer. We did not train models
with attention, since we wanted to investigate whether a standard RNN could capture compositionality.
The remaining hyperparameters were hidden dimension and dropout. We ran a search over the hidden
dimension sizes of 50, 100, 200, and 400 as well as dropout with a value of 0, .1, and .5 applied to
the word embeddings and recurrent layer. Each network was trained with the ADAM optimizer [10]
and a learning rate of .001 for 100,000 steps with a batch-size of 1. The best performing network had
a hidden dimension or 100 and dropout of .1.

A.5 ROLE trained on SCAN

For the ROLE models trained to approximate the GRU encoder trained on SCAN, we used a filler
dimension of 100, a role dimension of 50 with 50 roles available. For training, we used the ADAM
[10] optimizer with a learning rate of .001, batch size 32, and an early stopping patience of 10. The
role assignment module used a bidirectional 2-layer LSTM [7]. We performed a hyperparameter
search over the regularization coefficient λ using the values in the set [.1, .02, .01]. The best
performing value was .02, and we used this model in our analysis.

A.6 SCAN Role Analysis

The algorithm below characterizes our post-hoc interpretation of which roles the Role Learner will
assign to elements of the input to the SCAN model. This algorithm was created by hand based on
an analysis of the Role Learner’s outputs for the elements of the SCAN training set. The algorithm
works equally well on examples in the training set and the test set; on both datasets, it exactly matches
the roles chosen by the Role Learner for 98.7% of sequences (20,642 out of 20,910).2

A.6.1 A role-assignment algorithm implicitly learned by the SCAN seq2seq encoder

The input sequences have three basic types that are relevant to determining the role assignment:
sequences that contain and (e.g., jump around left and walk thrice), sequences that contain after (e.g.,
jump around left after walk thrice), and sequences without and or after (e.g., turn opposite right
thrice). Within commands containing and or after, it is convenient to break the command down into
the command before the connecting word and the command after it; for example, in the command
jump around left after walk thrice, these two components would be jump around left and walk thrice.

• Sequence with and:

– Elements of the command before and:
∗ Last word: 28
∗ First word (if not also last word): 46
∗ opposite if the command ends with thrice: 22
∗ Direction word between opposite and thrice: 2

2This figure of 98.7% is so constant across datasets presumably because the synthetic nature of the SCAN
dataset means that any reasonably-sized sample from it will be similarly representative of the entire dataset.

8



∗ opposite if the command does not end with thrice: 2
∗ Direction word after opposite but not before thrice: 4
∗ around: 22
∗ Direction word after around: 2
∗ Direction word between an action word and twice or thrice: 2

– Elements of the command before and:
∗ First word: 11
∗ Last word (if not also the first word): 36
∗ Second-to-last word (if not also the first word): 3
∗ Second of four words: 24

– and: 30

• Sequence with after:

– Elements of the command before after:
∗ Last word: 8
∗ Second-to-last word: 36
∗ First word (if not the last or second-to-last word): 11
∗ Second word (if not the last or second-to-last word): 3

– Elements of the command after after:
∗ Last word: 46
∗ Second-to-last word: 4
∗ First word if the command ends with around right: 4
∗ First word if the command ends with thrice and contains a rotation: 10
∗ First word if the command does not end with around right and does not contain

both thrice and a rotation: 17
∗ Second word if the command ends with thrice: 17
∗ Second word if the command does not end with thrice: 10

– after: 17 if no other word has role 17 or if the command after after ends with around
left; 43 otherwise

• Sequence without and or after:

– Action word directly before a cardinality: 4
– Action word before, but not directly before, a cardinality: 34
– thrice directly after an action word: 2
– twice directly after an action word: 2
– opposite in a sequence ending with twice: 8
– opposite in a sequence ending with thrice: 34
– around in a sequence ending with a cardinality: 22
– Direction word directly before a cardinality: 2
– Action word in a sequence without a cardinality: 46
– opposite in a sequence without a cardinality: 2
– Direction after opposite in a sequence without a cardinality: 26
– around in a sequence without a cardinality: 3
– Direction after around in a sequence without a cardinality: 22
– Direction directly after an action in a sequence without a cardinality: 22

To show how this works with an example, consider the input jump around left after walk thrice. The
command before after is jump around left. left, as the last word, is given role 8. around, as the
second-to-last word, gets role 36. jump, as a first word that is not also the last or second-to-last word
gets role 11. The command after after is walk thrice. thrice, as the last word, gets role 46. walk, as
the second-to-last word, gets role 4. Finally, after gets role 17 because no other elements have been
assigned role 17 yet. These predicted outputs match those given by the Role Learner.

9



A.6.2 Discussion of the algorithm

We offer several observations about this algorithm.

1. This algorithm may seem convoluted, but a few observations can illuminate how the roles
assigned by such an algorithm support success on the SCAN task. First, a sequence will
contain role 30 if and only if it contains and, and it will contain role 17 if and only if it
contains after. Thus, by implicitly checking for the presence of these two roles (regardless
of the fillers bound to them), the decoder can tell whether the output involves one or two
basic commands, where the presence of and or after leads to two basic commands and the
absence of both leads to one basic command. Moreover, if there are two basic commands,
whether it is role 17 or role 30 that is present can tell the decoder whether the input order of
these commands also corresponds to their output order (when it is and in play, i.e., role 30),
or if the input order is reversed (when it is after in play, i.e., role 17).
With these basic structural facts established, the decoder can begin to decode the specific
commands. For example, if the input is a sequence with after, it can begin with the command
after after, which it can decode by checking which fillers are bound to the relevant roles for
that type of command.
It may seem odd that so many of the roles are based on position (e.g., “first word" and
“second-to-last word"), rather than more functionally-relevant categories such as “direction
word." However, this approach may actually be more efficient: Each command consists
of a single mandatory element (namely, an action word such as walk or jump) followed
by several optional modifiers (namely, rotation words, direction words, and cardinalities).
Because most of the word categories are optional, it might be inefficient to check for the
presence of, e.g., a cardinality, since many sequences will not have one. By contrast, every
sequence will have a last word, and checking the identity of the last word provides much
functionally-relevant information: if that word is not a cardinality, then the decoder knows
that there is no cardinality present in the command (because if there were, it would be the
last word); and if it is a cardinality, then that is important to know, because the presence
of twice or thrice can dramatically affect the shape of the output sequence. In this light, it
is unsurprising that the SCAN encoder has implicitly learned several different roles that
essentially mean the last element of a particular subcommand.

2. The algorithm does not constitute a simple, transparent role scheme. But its job is to describe
the representations that the original network produces, and we have no a priori expectation
about how complex that process may be. The role-assignment algorithm implicitly learned
by ROLE is interpretable locally (each line is readily expressible in simple English), but not
intuitively transparent globally. We see this as a positive result, in two respects.
First, it shows why ROLE is crucial: no human-generated role scheme would provide a
good approximation to this algorithm. Such an algorithm can only be identified because
ROLE is able to use gradient descent to find role schemes far more complex than any we
would hypothesize intuitively. This enables us to analyze networks far more complex than
we could analyze previously, being necessarily limited to hand-designed role schemes based
on human intuitions about how to perform the task.
Second, when future work illuminates the computation in the original SCAN GRU seq2seq
decoder, the baroqueness of the role-assignment algorithm that ROLE has shown to be
implicit in the seq2seq encoder can potentially explain certain limitations in the original
model, which is known to suffer from severe failures of systematic generalization outside
the training distribution (Lake and Baroni, 2018). It is reasonable to hypothesize that
systematic generalization requires that the encoder learn an implicit role scheme that is
relatively simple and highly compositional. Future proposals for improving the systematic
generalization of models on SCAN can be examined using ROLE to test the hypothesis that
greater systematicity requires greater compositional simplicity in the role scheme implicitly
learned by the encoder.

3. While the role-assignment algorithm of A.8.1 may not be simple, from a certain perspective,
it is quite surprising that it is not far more complex. Although ROLE is provided 50 roles to
learn to deploy as it likes, it only chooses to use 16 of them (only 16 are ever selected as
the argmax(at); see Sec. 6.1). Furthermore, the SCAN grammar generates 20,910 input
sequences, containing a total of 151,688 words (an average of 7.25 words per input). This

10



means that, if one were to generate a series of conditional statements to determine which
role is assigned to each word in every context, this could in theory require up to 151,688
conditionals (e.g., “if the filler is ‘jump’ in the context ‘walk thrice after opposite left’,
then assign role 17”). However, our algorithm involves just 47 conditionals. This reduction
helps explain how the model performs so well on the test set: If it used many more of the
151,688 possible conditional rules, it would completely overfit the training examples in a
way that would be unlikely to generalize. The 47-conditional algorithm we found is more
likely to generalize by abstracting over many details of the context.

4. Were it not for ROLE’s ability to characterize the representations generated by the original
encoder in terms of implicit roles, providing an equally complete and accurate interpretation
of those representations would necessarily require identifying the conditions determining
the activation level of each of the 100 neurons hosting those representations. It seems to us
grossly overly optimistic to estimate that each neuron’s activation level in the representation
of a given input could be characterized by a property of the input statable in, say, two lines
of roughly 20 words/symbols; yet even then, the algorithm would require 200 lines, whereas
the algorithm in A.8.1 requires 47 lines of that scale. Thus, by even such a crude estimate of
the degree of complexity expected for an algorithm describing the representations in terms
of neuron activities, the algorithm we find, stated over roles, is 4 times simpler.

11


	Overview
	NN embedding of symbol structures
	The Role Learner (ROLE) Model
	A simple fully-compositional task
	The SCAN task
	The compositional structure of SCAN encoder representations
	Precision constituent-surgery on internal representations to produce desired outputs

	Conclusion
	Acknowledgments
	Appendix
	Tensor Product Encoder (TPE) Architecture
	The Role Learner (ROLE) Architecture
	ROLE regularization
	RNN trained on SCAN
	ROLE trained on SCAN
	SCAN Role Analysis
	A role-assignment algorithm implicitly learned by the SCAN seq2seq encoder
	Discussion of the algorithm



